Electron-Positron Pair Creation in Impulse-Shaped Electric Fields Diploma Thesis supervised by R. Alkofer

Florian Hebenstreit

Institute of Physics - Theoretical Physics Graz University

Hévíz, Jan. 2008

・ ロ ト ・ 雪 ト ・ 目 ト

Sac

Outline

- Electron-Positron Pair Creation in Electric Fields
- Particle-Transport in Electric Fields
- 2 Quantum Kinetic Equation of Transport
 - Quantum Vlasov Equation with Source Term
 - Backreaction Mechanism
- 3 Numerical Results
 - Single Particle Distribution Function $f(\mathbf{k}, t)$
 - Particle Number Density *n*(*t*)
 - Summary & Outlook

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Sar

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Outline

- Electron-Positron Pair Creation in Electric Fields
- Particle-Transport in Electric Fields
- Quantum Kinetic Equation of Transport
 Quantum Vlasov Equation with Source Terr
 Backreaction Mechanism
- 3 Numerical Results
 - Single Particle Distribution Function $f(\mathbf{k}, t)$
 - Particle Number Density *n*(*t*)
 - 4 Summary & Outlook

・ ロ ト ・ 雪 ト ・ 目 ト

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Schwinger-Mechanism

Electron-postitron pair creation in spatially homogeneous, time-independent electric fields E_0 :

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Schwinger-Mechanism

• Pair creation probability per unit volume and time:

$$W[e^+e^-] = \frac{e^2 E_0^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{nm^2\pi}{eE_0}\right)$$

J. Schwinger, Phys. Rev. 82, 664 (1951)

- Non-perturbative effect
- Strong electric fields needed \rightarrow difficult to produce:

$$E_{\rm cr} = \frac{m^2}{e} \approx 1.3 \cdot 10^{18} \, \mathrm{V/m}$$

- XFEL facilities at DESY and SLAC: $E_0 \approx 0.1 E_{cr}$
- QGP formation in haevy ion collisions at RHIC and CERN
 → chromoelectric field

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Schwinger-Mechanism

• Pair creation probability per unit volume and time:

$$W[e^+e^-] = \frac{e^2 E_0^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{nm^2\pi}{eE_0}\right)$$

J. Schwinger, Phys. Rev. 82, 664 (1951)

- Non-perturbative effect
- Strong electric fields needed → difficult to produce:

$$E_{\rm cr} = \frac{m^2}{e} \approx 1.3 \cdot 10^{18} \, \mathrm{V/m}$$

- XFEL facilities at DESY and SLAC: $E_0 \approx 0.1 E_{\rm cr}$
- QGP formation in haevy ion collisions at RHIC and CERN
 → chromoelectric field

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Schwinger-Mechanism

• Pair creation probability per unit volume and time:

$$W[e^+e^-] = \frac{e^2 E_0^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{nm^2\pi}{eE_0}\right)$$

J. Schwinger, Phys. Rev. 82, 664 (1951)

- Non-perturbative effect
- Strong electric fields needed \rightarrow difficult to produce:

$$E_{\rm cr} = \frac{m^2}{e} \approx 1.3 \cdot 10^{18} \, \mathrm{V/m}$$

• XFEL facilities at DESY and SLAC: $E_0 \approx 0.1 E_{cr}$

QGP formation in haevy ion collisions at RHIC and CERN
 → chromoelectric field

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Schwinger-Mechanism

• Pair creation probability per unit volume and time:

$$W[e^+e^-] = \frac{e^2 E_0^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{nm^2\pi}{eE_0}\right)$$

J. Schwinger, Phys. Rev. 82, 664 (1951)

- Non-perturbative effect
- Strong electric fields needed \rightarrow difficult to produce:

$$E_{
m cr}=rac{m^2}{e}pprox$$
 1.3 \cdot 10¹⁸ V/m

• XFEL facilities at DESY and SLAC: $E_0 \approx 0.1 E_{cr}$

QGP formation in haevy ion collisions at RHIC and CERN
 → chromoelectric field

nar

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Schwinger-Mechanism

• Pair creation probability per unit volume and time:

$$W[e^+e^-] = \frac{e^2 E_0^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-\frac{nm^2\pi}{eE_0}\right)$$

J. Schwinger, Phys. Rev. 82, 664 (1951)

- Non-perturbative effect
- $\bullet~$ Strong electric fields needed \rightarrow difficult to produce:

$$E_{
m cr}=rac{m^2}{e}pprox$$
 1.3 \cdot 10¹⁸ V/m

- XFEL facilities at DESY and SLAC: $E_0 \approx 0.1 E_{cr}$
- QGP formation in haevy ion collisions at RHIC and CERN
 → chromoelectric field

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Kinetic Equation of Particle-Transport

- Pair creation and transport is process far from equilibrium
- Time-dependet electric field $E(t) \rightarrow$ Vlasov equation

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{k},t) = \frac{\partial}{\partial t}f(\mathbf{k},t) + \mathbf{e}E(t)\frac{\partial}{\partial k_3}f(\mathbf{k},t) = \mathbf{S}(\mathbf{k},t)$$

Phenomenological approach with Schwinger source term:

$$S(\mathbf{k},t) = -2eE(t)\ln\left[1 - \exp\left(-\frac{(m^2 + \mathbf{k}_{\perp}^2)\pi}{eE(t)}\right)\right]\delta\left(k_3 - eA(t)\right)$$

- Static field $E_0 \rightarrow$ time-dependent field E(t)
- Combination of quantum field theory and kinetic theory → quantum kinetic theory

・ ロ ト ・ 雪 ト ・ 目 ト

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Kinetic Equation of Particle-Transport

- Pair creation and transport is process far from equilibrium
- Time-dependet electric field $E(t) \rightarrow \text{Vlasov}$ equation

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{k},t) = \frac{\partial}{\partial t}f(\mathbf{k},t) + e\mathbf{E}(t)\frac{\partial}{\partial k_3}f(\mathbf{k},t) = S(\mathbf{k},t)$$

Phenomenological approach with Schwinger source term:

$$S(\mathbf{k},t) = -2eE(t)\ln\left[1 - \exp\left(-\frac{(m^2 + \mathbf{k}_{\perp}^2)\pi}{eE(t)}\right)\right]\delta\left(k_3 - eA(t)\right)$$

- Static field $E_0 \rightarrow$ time-dependent field E(t)
- Combination of quantum field theory and kinetic theory → quantum kinetic theory

・ ロ ト ・ 雪 ト ・ 目 ト

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Kinetic Equation of Particle-Transport

- Pair creation and transport is process far from equilibrium
- Time-dependet electric field $E(t) \rightarrow \text{Vlasov}$ equation

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{k},t) = \frac{\partial}{\partial t}f(\mathbf{k},t) + \mathbf{e}\mathbf{E}(t)\frac{\partial}{\partial k_3}f(\mathbf{k},t) = \mathbf{S}(\mathbf{k},t)$$

Phenomenological approach with Schwinger source term:

$$S(\mathbf{k},t) = -2eE(t)\ln\left[1 - \exp\left(-\frac{(m^2 + \mathbf{k}_{\perp}^2)\pi}{eE(t)}\right)\right]\delta(k_3 - eA(t))$$

- Static field $E_0 \rightarrow$ time-dependent field E(t)
- Combination of quantum field theory and kinetic theory → quantum kinetic theory

・ ロ ト ス 雪 ト ス ヨ ト

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Kinetic Equation of Particle-Transport

- Pair creation and transport is process far from equilibrium
- Time-dependet electric field $E(t) \rightarrow \text{Vlasov}$ equation

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{k},t) = \frac{\partial}{\partial t}f(\mathbf{k},t) + \mathbf{e}\mathbf{E}(t)\frac{\partial}{\partial k_3}f(\mathbf{k},t) = \mathbf{S}(\mathbf{k},t)$$

Phenomenological approach with Schwinger source term:

$$S(\mathbf{k},t) = -2\mathbf{e}E(t)\ln\left[1 - \exp\left(-\frac{(m^2 + \mathbf{k}_{\perp}^2)\pi}{\mathbf{e}E(t)}\right)\right]\delta\left(k_3 - \mathbf{e}A(t)\right)$$

• Static field $E_0 \rightarrow$ time-dependent field E(t)

• Combination of quantum field theory and kinetic theory \rightarrow quantum kinetic theory

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Electron-Positron Pair Creation in Electric Fields Particle-Transport in Electric Fields

Kinetic Equation of Particle-Transport

- Pair creation and transport is process far from equilibrium
- Time-dependet electric field $E(t) \rightarrow \text{Vlasov}$ equation

$$\frac{\mathrm{d}}{\mathrm{d}t}f(\mathbf{k},t) = \frac{\partial}{\partial t}f(\mathbf{k},t) + \mathbf{e}\mathbf{E}(t)\frac{\partial}{\partial k_3}f(\mathbf{k},t) = \mathbf{S}(\mathbf{k},t)$$

• Phenomenological approach with Schwinger source term:

$$S(\mathbf{k},t) = -2\mathbf{e}E(t)\ln\left[1 - \exp\left(-\frac{(m^2 + \mathbf{k}_{\perp}^2)\pi}{\mathbf{e}E(t)}\right)\right]\delta\left(k_3 - \mathbf{e}A(t)\right)$$

- Static field $E_0 \rightarrow$ time-dependent field E(t)
- Combination of quantum field theory and kinetic theory → quantum kinetic theory

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Outline

Introduction & Motivation

- Electron-Positron Pair Creation in Electric Fields
 Partiala Transport in Electric Fields
- Particle-Transport in Electric Fields
- 2 Quantum Kinetic Equation of Transport
 - Quantum Vlasov Equation with Source Term
 - Backreaction Mechanism

3 Numerical Results

- Single Particle Distribution Function $f(\mathbf{k}, t)$
- Particle Number Density *n*(*t*)
- Summary & Outlook

・ ロ ト ・ 雪 ト ・ 目 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Starting point: QED

Y. Kluger *et al.*, Phys. Rev. D **45**, 4659 (1992) S. Schmidt *et al.*, Int. J. Mod. Phys. E **7**, 709 (1998)

- QED-Lagrangian: $\mathcal{L} = \bar{\Psi} \left[i \not{D} m \right] \Psi \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$
- Quantize only matter field → Mean electric field
- Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\mathbf{s}=\pm} \left[u_{\mathbf{s},\mathbf{p}}(t) \mathbf{a}_{\mathbf{s},\mathbf{k}} + v_{\mathbf{s},-\mathbf{p}}(t) b_{\mathbf{s},-\mathbf{k}}^{\dagger} \right] \mathrm{e}^{i\mathbf{k}\mathbf{x}}$$

Ansatz for the spinors:

$$u_{s,\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{\mathbf{p}}(t)R_{s}$$

$$v_{s,-\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{-\mathbf{p}}^{*}(t)R_{s}$$

・ ロ ト ・ 雪 ト ・ 目 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Starting point: QED

Y. Kluger *et al.*, Phys. Rev. D **45**, 4659 (1992) S. Schmidt *et al.*, Int. J. Mod. Phys. E **7**, 709 (1998)

- QED-Lagrangian: $\mathcal{L} = \bar{\Psi} \left[i D m \right] \Psi \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$
- Quantize only matter field \rightarrow Mean electric field
- Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{s=\pm} \left[u_{s,\mathbf{p}}(t) a_{s,\mathbf{k}} + v_{s,-\mathbf{p}}(t) b_{s,-\mathbf{k}}^{\dagger} \right] e^{i\mathbf{k}\mathbf{x}}$$

Ansatz for the spinors:

$$u_{s,\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{\mathbf{p}}(t)R_{s}$$
$$v_{s,-\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{-\mathbf{p}}^{*}(t)R_{s}$$

・ロト ・ 同ト ・ ヨト ・ ヨト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Starting point: QED

Y. Kluger *et al.*, Phys. Rev. D **45**, 4659 (1992) S. Schmidt *et al.*, Int. J. Mod. Phys. E **7**, 709 (1998)

- QED-Lagrangian: $\mathcal{L} = \bar{\Psi} \left[i \not{D} m \right] \Psi \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$
- Quantize only matter field → Mean electric field
- Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int rac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\mathbf{s}=\pm} \left[u_{\mathbf{s},\mathbf{p}}(t) \boldsymbol{a}_{\mathbf{s},\mathbf{k}} + v_{\mathbf{s},-\mathbf{p}}(t) \boldsymbol{b}_{\mathbf{s},-\mathbf{k}}^{\dagger}
ight] \mathbf{e}^{i\mathbf{k}\mathbf{x}}$$

Ansatz for the spinors:

$$u_{s,\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{\mathbf{p}}(t)R_{s}$$
$$v_{s,-\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{-\mathbf{p}}^{*}(t)R_{s}$$

A B > A B > A B > B = B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Starting point: QED

Y. Kluger *et al.*, Phys. Rev. D **45**, 4659 (1992) S. Schmidt *et al.*, Int. J. Mod. Phys. E **7**, 709 (1998)

- QED-Lagrangian: $\mathcal{L} = \bar{\Psi} \left[i \not{D} m \right] \Psi \frac{1}{4} F^{\mu\nu} F_{\mu\nu}$
- Quantize only matter field → Mean electric field
- Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int rac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{\mathbf{s}=\pm} \left[u_{\mathbf{s},\mathbf{p}}(t) \boldsymbol{a}_{\mathbf{s},\mathbf{k}} + v_{\mathbf{s},-\mathbf{p}}(t) \boldsymbol{b}_{\mathbf{s},-\mathbf{k}}^{\dagger}
ight] \mathrm{e}^{i\mathbf{k}\mathbf{x}}$$

Ansatz for the spinors:

$$u_{s,\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{\mathbf{p}}(t)R_{s}$$
$$v_{s,-\mathbf{p}}(t) = \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]g_{-\mathbf{p}}^{*}(t)R_{s}$$

・ ロ ト ・ 雪 ト ・ 目 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Time-Independent Particle Number

• Complex mode function $g_p(t)$ satisfies:

$$\left[\partial_t^2 + \omega_{\mathbf{p}}^2(t) + i\mathbf{e}\mathbf{E}(t)\right]g_{\mathbf{p}}(t) = 0$$

$$\omega_{\mathbf{p}}^2(t) = \left[k_3 - \mathbf{e}A(t)\right]^2 + \mathbf{k}_{\perp}^2 + m^2 = \mathbf{p}_{\parallel}^2(t) + \epsilon_{\perp}^2$$

• Time-independent number of particles (antiparticles) with helicity *s* and canonical momentum **k** (-**k**):

$$N^+_{s,\mathbf{k}} = \left\langle a^{\dagger}_{s,\mathbf{k}} a_{s,\mathbf{k}} \right\rangle = \left\langle b^{\dagger}_{s,-\mathbf{k}} b_{s,-\mathbf{k}} \right\rangle = N^-_{s,-\mathbf{k}}$$

- Orthogonality relations for spinors do not hold anymore → no separation between positive & negative energy solution
- Hamiltonian operator achieves off-diagonal elements

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Time-Independent Particle Number

• Complex mode function $g_p(t)$ satisfies:

$$\left[\partial_t^2 + \omega_{\mathbf{p}}^2(t) + i\mathbf{e}\mathbf{E}(t)\right]g_{\mathbf{p}}(t) = 0$$

 $\omega_{\mathbf{p}}^2(t) = \left[k_3 - \mathbf{e} \mathbf{A}(t)\right]^2 + \mathbf{k}_{\perp}^2 + m^2 = p_{\parallel}^2(t) + \epsilon_{\perp}^2$

 Time-independent number of particles (antiparticles) with helicity s and canonical momentum k (-k):

$$N^+_{s,\mathbf{k}} = \left\langle a^{\dagger}_{s,\mathbf{k}} a_{s,\mathbf{k}} \right\rangle = \left\langle b^{\dagger}_{s,-\mathbf{k}} b_{s,-\mathbf{k}} \right\rangle = N^-_{s,-\mathbf{k}}$$

- Orthogonality relations for spinors do not hold anymore → no separation between positive & negative energy solution
- Hamiltonian operator achieves off-diagonal elements

Sac

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Time-Independent Particle Number

• Complex mode function $g_p(t)$ satisfies:

$$\left[\partial_t^2 + \omega_{\mathbf{p}}^2(t) + i\mathbf{e}\mathbf{E}(t)\right]g_{\mathbf{p}}(t) = 0$$

 $\omega_{\mathbf{p}}^2(t) = \left[k_3 - \mathbf{e}A(t)\right]^2 + \mathbf{k}_{\perp}^2 + m^2 = \mathbf{p}_{\parallel}^2(t) + \epsilon_{\perp}^2$

 Time-independent number of particles (antiparticles) with helicity s and canonical momentum k (-k):

$$N^+_{s,\mathbf{k}} = \left\langle a^{\dagger}_{s,\mathbf{k}} a_{s,\mathbf{k}} \right\rangle = \left\langle b^{\dagger}_{s,-\mathbf{k}} b_{s,-\mathbf{k}} \right\rangle = N^-_{s,-\mathbf{k}}$$

- Orthogonality relations for spinors do not hold anymore → no separation between positive & negative energy solution
- Hamiltonian operator achieves off-diagonal elements

Sac

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Time-Independent Particle Number

• Complex mode function $g_p(t)$ satisfies:

$$\left[\partial_t^2 + \omega_{\mathbf{p}}^2(t) + i\mathbf{e}\mathbf{E}(t)\right]g_{\mathbf{p}}(t) = 0$$

 $\omega_{\mathbf{p}}^2(t) = \left[k_3 - \mathbf{e}A(t)\right]^2 + \mathbf{k}_{\perp}^2 + m^2 = \mathbf{p}_{\parallel}^2(t) + \epsilon_{\perp}^2$

 Time-independent number of particles (antiparticles) with helicity s and canonical momentum k (-k):

$$N^+_{s,\mathbf{k}} = \left\langle a^{\dagger}_{s,\mathbf{k}} a_{s,\mathbf{k}} \right\rangle = \left\langle b^{\dagger}_{s,-\mathbf{k}} b_{s,-\mathbf{k}} \right\rangle = N^-_{s,-\mathbf{k}}$$

- Orthogonality relations for spinors do not hold anymore → no separation between positive & negative energy solution
- Hamiltonian operator achieves off-diagonal elements

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Bogoliubov Transformation

• Time-dependent operators \rightarrow Bogoliubov transformation

$$\begin{split} \tilde{\boldsymbol{a}}_{\boldsymbol{s},\boldsymbol{k}}(t) &= \alpha_{\boldsymbol{p}}(t)\boldsymbol{a}_{\boldsymbol{s},\boldsymbol{k}} - \beta_{\boldsymbol{p}}^{*}(t)\boldsymbol{b}_{\boldsymbol{s},-\boldsymbol{k}}^{\dagger} \\ \tilde{\boldsymbol{b}}_{\boldsymbol{s},-\boldsymbol{k}}^{\dagger}(t) &= \beta_{\boldsymbol{p}}(t)\boldsymbol{a}_{\boldsymbol{s},\boldsymbol{k}} + \alpha_{\boldsymbol{p}}^{*}(t)\boldsymbol{b}_{\boldsymbol{s},-\boldsymbol{k}}^{\dagger} \end{split}$$

- For example: Remove $(e, s = +, \mathbf{k}) \rightarrow (0, 0, 0)$
- Time-dependent number of particles (antiparticles) with helicity s and canonical momentum k (-k):

$$\mathcal{N}_{s,\mathbf{k}}^{+}(t) = \left\langle \tilde{a}_{s,\mathbf{k}}^{\dagger}(t)\tilde{a}_{s,\mathbf{k}}(t) \right\rangle = \left\langle \tilde{b}_{s,-\mathbf{k}}^{\dagger}(t)\tilde{b}_{s,-\mathbf{k}}(t) \right\rangle = \mathcal{N}_{s,-\mathbf{k}}^{-}(t)$$

・ ロ ト ・ 雪 ト ・ 目 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Bogoliubov Transformation

• Time-dependent operators \rightarrow Bogoliubov transformation

$$egin{array}{rcl} \widetilde{m{a}}_{m{s},m{k}}(t) &=& lpha_{m{p}}(t)m{a}_{m{s},m{k}} - eta_{m{p}}^*(t)m{b}_{m{s},-m{k}}^\dagger \ \widetilde{m{b}}_{m{s},-m{k}}^\dagger(t) &=& eta_{m{p}}(t)m{a}_{m{s},m{k}} + lpha_{m{p}}^*(t)m{b}_{m{s},-m{k}}^\dagger \end{array}$$

- For example: Remove $(e, s = +, \mathbf{k}) \rightarrow (0, 0, 0)$
- Time-dependent number of particles (antiparticles) with helicity s and canonical momentum k (-k):

$$\mathcal{N}^+_{s,\mathbf{k}}(t) = \left\langle \tilde{a}^{\dagger}_{s,\mathbf{k}}(t)\tilde{a}_{s,\mathbf{k}}(t) \right\rangle = \left\langle \tilde{b}^{\dagger}_{s,-\mathbf{k}}(t)\tilde{b}_{s,-\mathbf{k}}(t) \right\rangle = \mathcal{N}^-_{s,-\mathbf{k}}(t)$$

・ ロ ト ・ 雪 ト ・ 目 ト

Sac

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Bogoliubov Transformation

• Time-dependent operators \rightarrow Bogoliubov transformation

$$egin{array}{rcl} ilde{ extbf{a}}_{ extbf{s}, extbf{k}}(t) &=& lpha_{ extbf{p}}(t) eta_{ extbf{s}, extbf{k}}^{\dagger}-eta_{ extbf{p}}(t) eta_{ extbf{s}, extbf{k}}^{\dagger}-eta_{ extbf{p}}(t) eta_{ extbf{s}, extbf{k}}+lpha_{ extbf{p}}^{*}(t) eta_{ extbf{s}, extbf{k}}^{\dagger}-eta_{ extbf{s}}(t) eta_{ extbf{s}, extbf{k}}+lpha_{ extbf{p}}^{*}(t) eta_{ extbf{s}, extbf{s}, extbf{k}}+lpha_{ extbf{p}}^{*}(t) eta_{ extbf{s}, extbf{k}}+lpha_{ extbf{p}}^{*}(t) eta_{ extbf{s}, extbf{s}, extbf{k}}+lpha_{ extbf{p}}^{*}(t) eta_{ extbf{s}, extbf{s}, extbf{s}}+lpha_{ extbf{s}, extbf{s}, extbf{s}, extbf{s}}+lpha_{ extbf{s}, extbf{s}, extbf{s}}+lpha_{ extbf{s}, extbf{s}, extbf{s}, extbf{s}, extbf{s}, extbf{s}, extbf{s}}+lpha_{ extbf{s}, extbf{s}, extbf{s}, extbf{s}}+lpha_{ extbf{s}, e$$

- For example: Remove $(e, s = +, \mathbf{k}) \rightarrow (0, 0, 0)$
- Time-dependent number of particles (antiparticles) with helicity s and canonical momentum k (-k):

$$\mathcal{N}^+_{\mathbf{s},\mathbf{k}}(t) = \left\langle \tilde{a}^{\dagger}_{\mathbf{s},\mathbf{k}}(t)\tilde{a}_{\mathbf{s},\mathbf{k}}(t) \right\rangle = \left\langle \tilde{b}^{\dagger}_{\mathbf{s},-\mathbf{k}}(t)\tilde{b}_{\mathbf{s},-\mathbf{k}}(t) \right\rangle = \mathcal{N}^-_{\mathbf{s},-\mathbf{k}}(t)$$

- コット (雪) (日) (日)

Sac

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Adiabatic Spinor Functions

Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{s=\pm} \left[\tilde{u}_{s,\mathbf{p}}(t) \tilde{a}_{s,\mathbf{k}}(t) + \tilde{v}_{s,-\mathbf{p}}(t) \tilde{b}_{s,-\mathbf{k}}^{\dagger}(t) \right] e^{i\mathbf{k}\mathbf{x}}$$

• Spin-structure not changed \rightarrow Ansatz for spinors::

$$\begin{split} \tilde{u}_{s,\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{\mathbf{p}}(t)R_{s}\\ \tilde{v}_{s,-\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{-\mathbf{p}}^{*}(t)R_{s} \end{split}$$

• Adiabatic mode functions $\tilde{g}_{\mathbf{p}}(t)$:

$$ilde{g}_{\mathbf{p}}(t)\sim \exp\left(-i\int_{t_0}^t \mathrm{d} au\,\omega_{\mathbf{p}}(au)
ight)$$

• Dynamical phase: $\Theta_{\mathbf{p}}(t_0, t) = \int_{t_0}^t \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Adiabatic Spinor Functions

Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{s=\pm} \left[\tilde{u}_{s,\mathbf{p}}(t) \tilde{a}_{s,\mathbf{k}}(t) + \tilde{v}_{s,-\mathbf{p}}(t) \tilde{b}_{s,-\mathbf{k}}^{\dagger}(t) \right] e^{i\mathbf{k}\mathbf{x}}$$

 $\bullet~$ Spin-structure not changed \rightarrow Ansatz for spinors::

$$\begin{split} \tilde{u}_{\mathbf{s},\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{\mathbf{p}}(t)R_{\mathbf{s}}\\ \tilde{v}_{\mathbf{s},-\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{-\mathbf{p}}^{*}(t)R_{\mathbf{s}} \end{split}$$

• Adiabatic mode functions $\tilde{g}_{p}(t)$:

$$ilde{g}_{\mathbf{p}}(t)\sim \exp\left(-i\int_{t_0}^t \mathrm{d} au\,\omega_{\mathbf{p}}(au)
ight)$$

• Dynamical phase: $\Theta_{\mathbf{p}}(t_0, t) = \int_{t_0}^t \mathrm{d}\tau \,\omega_{\mathbf{p}}(\tau)$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Adiabatic Spinor Functions

Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{s=\pm} \left[\tilde{u}_{s,\mathbf{p}}(t) \tilde{a}_{s,\mathbf{k}}(t) + \tilde{v}_{s,-\mathbf{p}}(t) \tilde{b}_{s,-\mathbf{k}}^{\dagger}(t) \right] e^{i\mathbf{k}\mathbf{x}}$$

 $\bullet~$ Spin-structure not changed \rightarrow Ansatz for spinors::

$$\begin{split} \tilde{u}_{\mathbf{s},\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{\mathbf{p}}(t)R_{\mathbf{s}}\\ \tilde{v}_{\mathbf{s},-\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{-\mathbf{p}}^{*}(t)R_{\mathbf{s}} \end{split}$$

• Adiabatic mode functions $\tilde{g}_{p}(t)$:

$$\tilde{g}_{\mathbf{p}}(t) \sim \exp\left(-i\int_{t_0}^t \mathrm{d}\tau\,\omega_{\mathbf{p}}(\tau)
ight)$$

• Dynamical phase: $\Theta_{\mathbf{p}}(t_0, t) = \int_{t_0}^t d\tau \, \omega_{\mathbf{p}}(\tau)$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Adiabatic Spinor Functions

Fourier-Transformation: Coordinate to momentum space

$$\Psi(\mathbf{x},t) = \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \sum_{s=\pm} \left[\tilde{u}_{s,\mathbf{p}}(t) \tilde{a}_{s,\mathbf{k}}(t) + \tilde{v}_{s,-\mathbf{p}}(t) \tilde{b}_{s,-\mathbf{k}}^{\dagger}(t) \right] e^{i\mathbf{k}\mathbf{x}}$$

 $\bullet~$ Spin-structure not changed $\rightarrow~$ Ansatz for spinors::

$$\begin{split} \tilde{u}_{\mathbf{s},\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{\mathbf{p}}(t)R_{\mathbf{s}}\\ \tilde{v}_{\mathbf{s},-\mathbf{p}}(t) &= \left[i\gamma^{0}\partial_{t} - \vec{\gamma}\cdot\mathbf{p} + m\right]\tilde{g}_{-\mathbf{p}}^{*}(t)R_{\mathbf{s}} \end{split}$$

• Adiabatic mode functions $\tilde{g}_{p}(t)$:

$$\tilde{g}_{\mathbf{p}}(t) \sim \exp\left(-i \int_{t_0}^t \mathrm{d}\tau \,\omega_{\mathbf{p}}(\tau)\right)$$

• Dynamical phase: $\Theta_{\mathbf{p}}(t_0, t) = \int_{t_0}^t \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

Orthogonality relations hold and Hamiltonian diagonal!

Quantum Vlasov equation including a source term:

$$\begin{split} \dot{\mathcal{N}}_{\mathbf{s},\mathbf{k}}(t) = & \frac{\mathbf{e}\,E(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \, \frac{\mathbf{e}\,E(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2\mathcal{N}_{\mathbf{s},\mathbf{k}}(t')\right] \\ & \times \cos\left(2\int_{t'}^{t} \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)\right) \end{split}$$

- Non-Markovian equation: Statistical factor & Cosine-term
- No spin preference \rightarrow Replace $\mathcal{N}_{s,\mathbf{k}}(t) = \mathcal{N}_{\mathbf{k}}(t) = f(\mathbf{k},t)$
- Particle number density: $n(t) = 2 \int [dk] f(\mathbf{k}, t)$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

SOR

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

- Orthogonality relations hold and Hamiltonian diagonal!
- Quantum Vlasov equation including a source term:

$$\begin{split} \dot{\mathcal{N}}_{\mathbf{S},\mathbf{k}}(t) = & \frac{\mathbf{e}\,\mathbf{E}(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \, \frac{\mathbf{e}\,\mathbf{E}(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2\mathcal{N}_{\mathbf{S},\mathbf{k}}(t')\right] \\ & \times \cos\left(2\int_{t'}^{t} \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)\right) \end{split}$$

- Non-Markovian equation: Statistical factor & Cosine-term
- No spin preference \rightarrow Replace $\mathcal{N}_{s,\mathbf{k}}(t) = \mathcal{N}_{\mathbf{k}}(t) = f(\mathbf{k},t)$
- Particle number density: $n(t) = 2 \int [dk] f(\mathbf{k}, t)$

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

- Orthogonality relations hold and Hamiltonian diagonal!
- Quantum Vlasov equation including a source term:

$$\begin{split} \dot{\mathcal{N}}_{\mathbf{s},\mathbf{k}}(t) = & \frac{\mathbf{e}\,\mathbf{E}(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \,\, \frac{\mathbf{e}\,\mathbf{E}(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2\mathcal{N}_{\mathbf{s},\mathbf{k}}(t')\right] \\ & \times \cos\left(2\int_{t'}^{t} \mathrm{d}\tau\,\omega_{\mathbf{p}}(\tau)\right) \end{split}$$

Non-Markovian equation: Statistical factor & Cosine-term

- No spin preference \rightarrow Replace $\mathcal{N}_{s,\mathbf{k}}(t) = \mathcal{N}_{\mathbf{k}}(t) = f(\mathbf{k},t)$
- Particle number density: $n(t) = 2 \int [dk] f(\mathbf{k}, t)$

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

- Orthogonality relations hold and Hamiltonian diagonal!
- Quantum Vlasov equation including a source term:

$$\begin{split} \dot{\mathcal{N}}_{\mathbf{s},\mathbf{k}}(t) = & \frac{\mathbf{e}\,\boldsymbol{E}(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \, \frac{\mathbf{e}\,\boldsymbol{E}(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2\mathcal{N}_{\mathbf{s},\mathbf{k}}(t')\right] \\ & \times \cos\left(2\int_{t'}^{t} \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)\right) \end{split}$$

- Non-Markovian equation: Statistical factor & Cosine-term
- No spin preference \rightarrow Replace $\mathcal{N}_{s,\mathbf{k}}(t) = \mathcal{N}_{\mathbf{k}}(t) = f(\mathbf{k},t)$
- Particle number density: $n(t) = 2 \int [dk] f(\mathbf{k}, t)$

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

- Orthogonality relations hold and Hamiltonian diagonal!
- Quantum Vlasov equation including a source term:

$$\begin{split} \dot{\mathcal{N}}_{\mathbf{s},\mathbf{k}}(t) = & \frac{\mathbf{e}\,\mathbf{E}(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \, \frac{\mathbf{e}\,\mathbf{E}(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2\mathcal{N}_{\mathbf{s},\mathbf{k}}(t')\right] \\ & \times \cos\left(2\int_{t'}^{t} \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)\right) \end{split}$$

- Non-Markovian equation: Statistical factor & Cosine-term
- No spin preference \rightarrow Replace $\mathcal{N}_{s,\mathbf{k}}(t) = \mathcal{N}_{\mathbf{k}}(t) = f(\mathbf{k},t)$
- Particle number density: $n(t) = 2 \int [dk] f(\mathbf{k}, t)$

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

• Time-Scale: Compton wavelength and oscillations of cosine-term $\tau_{\rm qu} \sim \frac{1}{\epsilon_{\perp}}$

$$au_{
m pr} \sim rac{\epsilon_{\perp}}{eE(t)}$$

• Quantum effects important for $au_{
m qu} pprox au_{
m pr}
ightarrow eE(t) \gtrsim \epsilon_{\perp}^2$

Sac
Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

- Time-Scale: Compton wavelength and oscillations of cosine-term $au_{
 m qu} \sim rac{1}{\epsilon_{
 m l}}$
- Time-Scale: Production time scale over which particles are produced

$$au_{
m pr} \sim rac{\epsilon_{\perp}}{eE(t)}$$

• Quantum effects important for $au_{
m qu} \approx au_{
m pr}
ightarrow eE(t) \gtrsim \epsilon_{\perp}^2$

- コット (雪) (日) (日)

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Quantum Kinetic Equation

- Time-Scale: Compton wavelength and oscillations of cosine-term $au_{
 m qu} \sim rac{1}{\epsilon_{
 m l}}$
- Time-Scale: Production time scale over which particles are produced

$$au_{\rm pr} \sim rac{\epsilon_{\perp}}{eE(t)}$$

• Quantum effects important for $\tau_{qu} \approx \tau_{pr} \rightarrow eE(t) \gtrsim \epsilon_{\perp}^2$

- コット (雪) (日) (日)

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electric field $E_{int}(t)$ due to electron-positron pairs:

$$\mathbf{E}(t) = \mathbf{E}_{\text{ext}}(t) + \mathbf{E}_{\text{int}}(t)$$

• Additional contribution in the vector potential *A*_{int}(*t*):

$$\mathbf{E}(t) = -\dot{\mathbf{A}}(t) = -\dot{\mathbf{A}}_{\text{ext}}(t) - \dot{\mathbf{A}}_{\text{int}}(t)$$

• Internal electromagnetic current $\mathbf{j}_{int}(t)$ as well:

$$\dot{\mathsf{E}}(t) = -\mathbf{j}(t) = -\mathbf{j}_{\text{ext}}(t) - \mathbf{j}_{\text{int}}(t)$$

• **j**_{int}(*t*) follows from symmetrized current density:

$$\mathbf{j}_{ ext{int}}(t) = rac{\mathsf{e}}{2}\int \mathrm{d}^3x\,\left< \left[ar{\Psi}(\mathbf{x},t),ar{\gamma}\Psi(\mathbf{x},t)
ight]
ight>$$

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Sar

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electric field $E_{int}(t)$ due to electron-positron pairs:

$$\mathsf{E}(t) = \mathsf{E}_{\mathrm{ext}}(t) + \mathsf{E}_{\mathrm{int}}(t)$$

• Additional contribution in the vector potential $A_{int}(t)$:

$$\mathbf{E}(t) = -\dot{\mathbf{A}}(t) = -\dot{\mathbf{A}}_{\text{ext}}(t) - \dot{\mathbf{A}}_{\text{int}}(t)$$

• Internal electromagnetic current $\mathbf{j}_{int}(t)$ as well:

$$\dot{\mathbf{E}}(t) = -\mathbf{j}(t) = -\mathbf{j}_{\text{ext}}(t) - \mathbf{j}_{\text{int}}(t)$$

• **j**_{int}(*t*) follows from symmetrized current density:

$$\mathbf{j}_{ ext{int}}(t) = rac{\mathsf{e}}{2}\int \mathrm{d}^3x\,\left< \left[ar{\Psi}(\mathbf{x},t),ar{\gamma}\Psi(\mathbf{x},t)
ight]
ight>$$

- コット (雪) (日) (日)

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electric field $E_{int}(t)$ due to electron-positron pairs:

$$\mathbf{E}(t) = \mathbf{E}_{\text{ext}}(t) + \mathbf{E}_{\text{int}}(t)$$

• Additional contribution in the vector potential $A_{int}(t)$:

$$\mathbf{E}(t) = -\dot{\mathbf{A}}(t) = -\dot{\mathbf{A}}_{ext}(t) - \dot{\mathbf{A}}_{int}(t)$$

• Internal electromagnetic current $\mathbf{j}_{int}(t)$ as well:

$$\dot{\mathbf{E}}(t) = -\mathbf{j}(t) = -\mathbf{j}_{\text{ext}}(t) - \mathbf{j}_{\text{int}}(t)$$

• **j**_{int}(*t*) follows from symmetrized current density:

$$\mathbf{j}_{ ext{int}}(t) = rac{\mathsf{e}}{2}\int \mathrm{d}^3x\,\left< \left[ar{\Psi}(\mathbf{x},t),ar{\gamma}\Psi(\mathbf{x},t)
ight]
ight>$$

- コット (雪) (日) (日)

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electric field $E_{int}(t)$ due to electron-positron pairs:

$$\mathbf{E}(t) = \mathbf{E}_{\text{ext}}(t) + \mathbf{E}_{\text{int}}(t)$$

• Additional contribution in the vector potential $A_{int}(t)$:

$$\mathbf{E}(t) = -\dot{\mathbf{A}}(t) = -\dot{\mathbf{A}}_{ext}(t) - \dot{\mathbf{A}}_{int}(t)$$

• Internal electromagnetic current $\mathbf{j}_{int}(t)$ as well:

$$\dot{\mathbf{E}}(t) = -\mathbf{j}(t) = -\mathbf{j}_{\text{ext}}(t) - \mathbf{j}_{\text{int}}(t)$$

• **j**_{int}(*t*) follows from symmetrized current density:

$$\mathbf{j}_{ ext{int}}(t) = rac{\mathbf{e}}{2}\int \mathrm{d}^{3}x\,\left\langle \left[ar{\Psi}(\mathbf{x},t),ec{\gamma}\Psi(\mathbf{x},t)
ight]
ight
angle$$

- コット (雪) (日) (日)

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electromagnetic current $j_{int}(t)$ in the \mathbf{e}_z direction:

$$j_{\text{int}}(t) = 4e \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{\rho_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \mathcal{N}_{\mathbf{k}}(t) + \frac{4}{E(t)} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \omega_{\mathbf{p}}(t) \dot{\mathcal{N}}_{\mathbf{k}}(t)$$

- Conduction current stays regular for all momenta!
- Polarization current exhibits a logarithmic UV-divergence
- Charge renormalization
- Properly renormalized internal electromagnetic current:

$$4e \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{p_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \left[\mathcal{N}_{\mathbf{k}}(t) + \frac{\omega_{\mathbf{p}}^{2}(t)}{eE(t)p_{\parallel}(t)} \dot{\mathcal{N}}_{\mathbf{k}}(t) - \frac{e\dot{E}(t)\epsilon_{\perp}^{2}}{8\omega_{\mathbf{p}}^{4}(t)p_{\parallel}(t)} \right]$$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electromagnetic current $j_{int}(t)$ in the \mathbf{e}_z direction:

$$\dot{j}_{\text{int}}(t) = 4e \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{\rho_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \mathcal{N}_{\mathbf{k}}(t) + \frac{4}{E(t)} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \omega_{\mathbf{p}}(t) \dot{\mathcal{N}}_{\mathbf{k}}(t)$$

- Conduction current stays regular for all momenta!
- Polarization current exhibits a logarithmic UV-divergence
- Charge renormalization
- Properly renormalized internal electromagnetic current:

$$4e \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{p_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \left[\mathcal{N}_{\mathbf{k}}(t) + \frac{\omega_{\mathbf{p}}^{2}(t)}{eE(t)p_{\parallel}(t)} \dot{\mathcal{N}}_{\mathbf{k}}(t) - \frac{e\dot{E}(t)\epsilon_{\perp}^{2}}{8\omega_{\mathbf{p}}^{4}(t)p_{\parallel}(t)} \right]$$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electromagnetic current $j_{int}(t)$ in the \mathbf{e}_z direction:

$$j_{\text{int}}(t) = 4e \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{p_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \mathcal{N}_{\mathbf{k}}(t) + \frac{4}{E(t)} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \omega_{\mathbf{p}}(t) \dot{\mathcal{N}}_{\mathbf{k}}(t)$$

- Conduction current stays regular for all momenta!
- Polarization current exhibits a logarithmic UV-divergence
- Charge renormalization
- Properly renormalized internal electromagnetic current:

$$4e \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{p_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \left[\mathcal{N}_{\mathbf{k}}(t) + \frac{\omega_{\mathbf{p}}^{2}(t)}{eE(t)p_{\parallel}(t)} \dot{\mathcal{N}}_{\mathbf{k}}(t) - \frac{e\dot{E}(t)\epsilon_{\perp}^{2}}{8\omega_{\mathbf{p}}^{4}(t)p_{\parallel}(t)} \right]$$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electromagnetic current $j_{int}(t)$ in the \mathbf{e}_z direction:

$$\dot{j}_{
m int}(t) = 4e \int rac{\mathrm{d}^3 k}{(2\pi)^3} rac{oldsymbol{p}_{\parallel}(t)}{\omega_{oldsymbol{p}}(t)} \mathcal{N}_{oldsymbol{k}}(t) + rac{4}{E(t)} \int rac{\mathrm{d}^3 k}{(2\pi)^3} \omega_{oldsymbol{p}}(t) \dot{\mathcal{N}}_{oldsymbol{k}}(t)$$

- Conduction current stays regular for all momenta!
- Polarization current exhibits a logarithmic UV-divergence
- Charge renormalization
- Properly renormalized internal electromagnetic current:

$$4e \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{p_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \left[\mathcal{N}_{\mathbf{k}}(t) + \frac{\omega_{\mathbf{p}}^{2}(t)}{eE(t)p_{\parallel}(t)} \dot{\mathcal{N}}_{\mathbf{k}}(t) - \frac{e\dot{E}(t)\epsilon_{\perp}^{2}}{8\omega_{\mathbf{p}}^{4}(t)p_{\parallel}(t)} \right]$$

Quantum Vlasov Equation with Source Term Backreaction Mechanism

Internal Electric Field $E_{int}(t)$

• Internal electromagnetic current $j_{int}(t)$ in the \mathbf{e}_z direction:

$$j_{\text{int}}(t) = 4e \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{p_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \mathcal{N}_{\mathbf{k}}(t) + \frac{4}{E(t)} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \omega_{\mathbf{p}}(t) \dot{\mathcal{N}}_{\mathbf{k}}(t)$$

- Conduction current stays regular for all momenta!
- Polarization current exhibits a logarithmic UV-divergence
- Charge renormalization
- Properly renormalized internal electromagnetic current:

$$4e \int \frac{\mathrm{d}^{3}k}{(2\pi)^{3}} \frac{p_{\parallel}(t)}{\omega_{\mathbf{p}}(t)} \left[\mathcal{N}_{\mathbf{k}}(t) + \frac{\omega_{\mathbf{p}}^{2}(t)}{eE(t)p_{\parallel}(t)} \dot{\mathcal{N}}_{\mathbf{k}}(t) - \frac{e\dot{E}(t)\epsilon_{\perp}^{2}}{8\omega_{\mathbf{p}}^{4}(t)p_{\parallel}(t)} \right]$$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

SOR

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Outline

Introduction & Motivation
 Electron-Positron Pair Creation in Electric Fields
 Particle-Transport in Electric Fields

- Quantum Kinetic Equation of Transport
 Quantum Vlasov Equation with Source Term
 Backreaction Mechanism
- 3 Numerical Results
 - Single Particle Distribution Function $f(\mathbf{k}, t)$
 - Particle Number Density *n*(*t*)
 - Summary & Outlook

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

General Settings

• Impulse-shaped external electric field $E_{ext}(t)$:

Very short pulse length: t_{pulse,1} = 10⁻¹⁹ s
 Neglect the backreaction mechanism for the mongent, so and so

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

General Settings

• Impulse-shaped external electric field $E_{ext}(t)$:

Neglect the backreaction mechanism for the momenta , a social sector is the momenta and the momenta is the sector is the momenta and the mo

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

General Settings

• Impulse-shaped external electric field $E_{ext}(t)$:

- Very short pulse length: $t_{pulse,1} = 10^{-19} s$
- Neglect the backreaction mechanism for the moment .

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Solve full non-Markovian equation for the production rate:

$$\begin{split} \dot{f}_{\rm nm}(\mathbf{k},t) = & \frac{\mathbf{e}\, \mathbf{E}(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \, \frac{\mathbf{e}\, \mathbf{E}(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2f_{\rm nm}(\mathbf{k},t')\right] \\ & \times \cos\left(2\int_{t'}^{t} \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)\right) \end{split}$$

(日)

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Weak field: $E_0 = 0.1 E_{cr}$

Strong field: $E_0 = E_{cr}$:

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Weak field: $E_0 = 0.1 E_{cr}$ S $t=0.5 \times 10^{-20} s$ 0.007 c 0.10 c

Strong field: $E_0 = E_{cr}$:

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit
Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

Weak field: $E_0 = 0.1 E_{cr}$

- Particle creation not only at rest: $-1 \text{ MeV} \lesssim p_{\parallel} \lesssim 1 \text{ MeV}$
- Approximately, still symmetry around t = 0

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, t)$ for $k_{\perp} = 0$

• Particle creation not only at rest: $-1 \text{ MeV} \lesssim p_{\parallel} \lesssim 1 \text{ MeV}$

- Electron-positron pairs are accelerated and drift away from each other
- Asymptotic distribution peaked around $p_{\parallel} \approx 5 \, {\rm MeV}$
- No symmetry around t = 0

Strong field: $E_0 = E_{cr}$

• □ > • □ > • □ > • □ > • □ >

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, 0)$

Weak field: $E_0 = 0.1 E_{cr}$

- Particle creation for perpendicular momenta: k_⊥ ≲ 1 MeV
- Distribution function approximately exponentially damped as function of k²_⊥

・ロト ・ 同ト ・ ヨト ・ ヨト

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, 2 \cdot 10^{-20} s)$

Weak field: $E_0 = 0.1 E_{cr}$

 Particle-antiparticle pairs are annihilated for weakening electric field again

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, 0)$

 Particle creation for perpendicular momenta: k_⊥ ≲ 1 MeV

- Distribution function approximately exponentially damped as function of k²₁
- Particle-antiparticle pairs are accelerated for $k_{\perp} \lesssim 0.5 \,\mathrm{MeV}$

Strong field: $E_0 = E_{cr}$

• □ > • □ > • □ > • □ > • □ >

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Single Particle Distribution Function $f(\mathbf{k}, 2 \cdot 10^{-20} s)$

Strong field: $E_0 = E_{cr}$

• Asymptotic distribution peaked around $p_{\parallel} \approx 5 \, {
m MeV}$ with perpendicular momenta $k_{\perp} \lesssim 0.5 \, {
m MeV}$

・ ロ ト ・ 雪 ト ・ 目 ト

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Non-vanishing number density $n_{\rm nm}(\infty)$ even for $E_0 = 0.1 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	6
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	9.4 · 10 ⁻⁶
$t_{\rm max}[10^{-20}{ m s}]$	0.005

 $E_0 = 0.1 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Non-vanishing number density $n_{\rm nm}(\infty)$ even for $E_0 = 0.1 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	36
$n_{ m nm}(\infty)/n_{ m nm}(t_{ m max})$	$1.4 \cdot 10^{-5}$
<i>t</i> _{max} [10 ⁻²⁰ s]	-0.010

 $E_0 = 0.2E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Non-vanishing number density $n_{\rm nm}(\infty)$ even for $E_0 = 0.1 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	2.7 · 10 ³
$n_{ m nm}(\infty)/n_{ m nm}(t_{ m max})$	$4.6 \cdot 10^{-4}$
$t_{\rm max}[10^{-20}{ m s}]$	-0.005

 $E_0 = 0.3 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{
 m nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{
 m cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	$5.9\cdot10^4$
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	5.6 · 10 ⁻³
$t_{\rm max}[10^{-20}{ m s}]$	0.025

 $E_0 = 0.4 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	4.5 · 10 ⁵
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	2.6 · 10 ⁻²
$t_{\rm max}[10^{-20}{ m s}]$	0.055

$$E_0 = 0.5 E_{\rm cr}$$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	1.9 · 10 ⁶
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	7.2 · 10 ⁻²
$t_{\rm max}[10^{-20}{ m s}]$	0.035

 $E_0 = 0.6 E_{\rm cr}$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	5.6 · 10 ⁶
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	0.15
$t_{\rm max}[10^{-20}{ m s}]$	0.050

 $E_0 = 0.7 E_{\rm cr}$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	$1.3 \cdot 10^{7}$
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	0.25
$t_{\rm max}[10^{-20}{ m s}]$	0.080

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{\rm nm}(\infty)[{\rm nm}^{-3}]$	$2.7 \cdot 10^{7}$
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	0.37
$t_{\rm max}[10^{-20}{ m s}]$	0.225

 $E_0 = 0.9 E_{\rm cr}$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	$4.8 \cdot 10^{7}$
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	0.48
$t_{\rm max}[10^{-20}{ m s}]$	0.230

 $E_0 = E_{\rm cr}$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Field Strength Dependence of $n_{nm}(t)$

- Sizeable number density $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.4 E_{\rm cr}$
- Ratio $n_{nm}(\infty)/n_{nm}(t_{max})$ increases as a function of E_0
- The peak of the number density $n_{nm}(t_{max})$ is shifted to later times for $E_0 \gtrsim 0.9E_{cr}$

$n_{ m nm}(\infty)[m nm^{-3}]$	1.1 · 10 ⁹
$n_{\rm nm}(\infty)/n_{\rm nm}(t_{\rm max})$	0.92
$t_{\rm max}[10^{-20}{ m s}]$	0.830

 $E_0 = 2E_{cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

Solve Markovian equation for the production rate:

$$egin{aligned} \dot{f}_{\mathrm{m}}(\mathbf{k},t) =& \left[1-2f_{\mathrm{m}}(\mathbf{k},t)
ight]rac{\mathbf{e}\, \mathcal{E}(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t}\mathrm{d}t'\;rac{\mathbf{e}\, \mathcal{E}(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \ & imes\cos\left(2\int_{t'}^{t}\mathrm{d} au\,\omega_{\mathbf{p}}(au)
ight) \end{aligned}$$

Solve low-density equation for the production rate:

$$\dot{f}_{
m ld}(\mathbf{k},t) = rac{\mathbf{e} \, \mathbf{E}(t) \epsilon_{\perp}}{2\omega_{\mathbf{p}}^2(t)} \int_{t_0}^t \mathrm{d}t' \; rac{\mathbf{e} \, \mathbf{E}(t') \epsilon_{\perp}}{\omega_{\mathbf{p}}^2(t')} imes \cos\left(2\int_{t'}^t \mathrm{d} au \, \omega_{\mathbf{p}}(au)
ight)$$

- コット (雪) (日) (日)

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 $E_0=0.1 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 Approximations describe nnm(t) [nm⁻³] $n_{\rm nm}(t_{\rm max})$ for $E_0 \lesssim 0.9 E_{\rm cr}$ well 2.5×10^{6} 2×10^{6} Approximations overestimate $n_{\rm nm}(\infty)$ for $E_0 \gtrsim 0.3 E_{\rm cr}$ 1.5×10^{6} $1. \times 10^{6}$ l-d Markov 500 000 1.001 1.001 $n(t_{\rm max})/n_{\rm nm}(t_{\rm max})$ t [10⁻²⁰s] -2.5 0 25 5 1.053 1.053 $n(\infty)/n_{\rm nm}(\infty)$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 $E_0 = 0.3 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 $\textit{E}_0 = 0.4\textit{E}_{cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

$$\textit{E}_0 = 0.5\textit{E}_{cr}$$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 $E_0 = 0.6E_{\rm cr}$

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 $E_0 = 0.7 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 $E_0 = 0.8 E_{cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Low-Density / Markovian approximation of $n_{nm}(t)$

 Approximations show the correct characteristics

 $E_0 = 2E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism

Solve full non-Markovian equation for the production rate:

$$\begin{split} \dot{f}_{\text{back}}(\mathbf{k},t) = & \frac{e \, E(t) \epsilon_{\perp}}{2 \omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \, \frac{e \, E(t') \epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2 f_{\text{back}}(\mathbf{k},t') \right] \\ & \times \cos\left(2 \int_{t'}^{t} \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)\right) \end{split}$$

Include the backreaction mechanism in the calculation:

$$\dot{E}_{
m int}(t) = -4e \int rac{\mathrm{d}^3 k}{(2\pi)^3} \left[rac{oldsymbol{p}_{\parallel}(t)}{\omega_{oldsymbol{p}}(t)} f_{
m back}(oldsymbol{k},t) + rac{\omega_{oldsymbol{p}}(t)}{eE(t)} \dot{f}_{
m back}(oldsymbol{k},t) - rac{e\dot{E}(t)\epsilon_{\perp}^2}{8\,\omega_{oldsymbol{p}}^5(t)}
ight]$$

(ロ) (日) (日) (日) (日) (日) (日)

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \lesssim 0.3 E_{\rm cr}$: $t \approx 0$

$$E_0 = 0.1 E_{\rm cr}$$

- Virtual particle creation for $E \gtrsim 2 \cdot 10^{10} \, \mathrm{eV}^2$
- Backreaction mechanism becomes imporant just for for field strenghts $E_0 \gtrsim E_{\rm cr}$

$$\begin{array}{c|c} E_{\text{int}}(5 \cdot 10^{-20} \,\text{s}) \,[\text{eV}^2] & -1.2 \cdot 10^6 \\ \hline E_{\text{int}}(5 \cdot 10^{-20} \,\text{s}) \,/E_{\text{cr}} & 1.3 \cdot 10^{-6} \end{array}$$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \lesssim 0.3 E_{\rm cr}$: $t \approx 0$

 $E_0=0.2E_{\rm cr}$

- Virtual particle creation for $E \gtrsim 2 \cdot 10^{10} \, eV^2$
- Backreaction mechanism becomes imporant just for for field strenghts $E_0 \gtrsim E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

- For $E_0 \leq 0.3E_{\rm cr}$: $t \approx 0$
- Virtual particle creation for $E \ge 2 \cdot 10^{10} \, \mathrm{eV^2}$
- Backreaction mechanism

$$\textit{E}_0 = 0.3\textit{E}_{cr}$$

・ ロ ト ・ 雪 ト ・ 目 ト Electron-Positron Pair Creation in Impulse-Shaped Electric Fields

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

 $E_0 = 0.4 E_{\rm cr}$

- Virtual particle creation for $E \gtrsim 2 \cdot 10^{10} \, eV^2$
- Backreaction mechanism becomes imporant just for for field strenghts $E_0 \gtrsim E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

 $E_0 = 0.5 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

 $E_0 = 0.6 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

$$E_0 = 0.7 E_{\rm cr}$$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

 $E_0 = 0.8 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

 $E_0 = 0.9 E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

 $E_0 = E_{\rm cr}$

Florian Hebenstreit

Electron-Positron Pair Creation in Impulse-Shaped Electric Fields

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Internal Electric Field

• For $E_0 \gtrsim 0.3 E_{\rm cr}$: $t = 5 \cdot 10^{-20} \, {\rm s}$

 $E_0 = 2E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Number Density $n_{\text{back}}(t)$

- For E₀ ≤ E_{cr}: Backreaction mechanism is marginal
- Particle creation → asymptotic particles?!
- Long-term evolution of the single particle distribution function?!

 $E_0 = E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Number Density $n_{\text{back}}(t)$

 $E_0 = E_{\rm cr}$

- For E₀ ≤ E_{cr}: Backreaction mechanism is marginal
- Particle creation → asymptotic particles?!
- Long-term evolution of the single particle distribution function?!

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Number Density $n_{\text{back}}(t)$

- For E₀ ≥ E_{cr}: Backreaction mechanism is important
- Particle creation → asymptotic particles?!
- Long-term evolution of the single particle distribution function?!

 $E_0 = 2E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Number Density $n_{\text{back}}(t)$

- For E₀ ≥ E_{cr}: Backreaction mechanism is important
- Particle creation → asymptotic particles?!
- Long-term evolution of the single particle distribution function?!

 $E_0 = 2E_{\rm cr}$

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Backreaction Mechanism - Number Density $n_{\text{back}}(t)$

- For E₀ ≥ E_{cr}: Backreaction mechanism is important
- Particle creation → asymptotic particles?!
- Long-term evolution of the single particle distribution function?!

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Pulse Length Dependence of $n_{nm}(t)$

Solve full non-Markovian equation for the production rate:

$$\dot{f}_{nm}(\mathbf{k},t) = rac{\mathbf{e} \, \mathbf{E}(t)\epsilon_{\perp}}{2\omega_{\mathbf{p}}^{2}(t)} \int_{t_{0}}^{t} \mathrm{d}t' \; rac{\mathbf{e} \, \mathbf{E}(t')\epsilon_{\perp}}{\omega_{\mathbf{p}}^{2}(t')} \left[1 - 2f_{nm}(\mathbf{k},t')
ight] \times \cos\left(2\int_{t'}^{t} \mathrm{d}\tau \, \omega_{\mathbf{p}}(\tau)
ight)$$

Ignore the backreaction mechanism!

Choose longer pulse lengths:

$$t_{\text{pulse},2} = 2 \cdot 10^{-19} \text{ s} = 2t_{\text{pulse},1}$$

 $t_{\text{pulse},4} = 4 \cdot 10^{-19} \text{ s} = 4t_{\text{pulse},1}$

- コット (雪) (日) (日)

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Pulse Length Dependence of $n_{nm}(t)$

E₀ = 0.1E_{cr}: n_{nm}(t
 inearly identical for all pulse lengths

 $E_0 = 0.1 E_{\rm cr}$

• $E_0 = 0.4 E_{cr}$: More oscillations

• $E_0 \ge 0.7 E_{\rm cr}$: $n_{\rm nm}(\bar{t})$ increases

• $E_0 = 2E_{cr}$: Proportionality $n_{nm,j}(\infty) \approx j \cdot n_{nm}(\infty)$

	2	4
$n(t_{\rm max})/n_{\rm nm}(t_{\rm max})$	1.002	1.003
$n(\infty)/n_{ m nm}(\infty)$	1.051	1.037

Electron-Positron Pair Creation in Impulse-Shaped Electric Fields

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Pulse Length Dependence of $n_{nm}(t)$

E₀ = 0.1E_{cr}: n_{nm}(t
 inearly identical for all pulse lengths

 $E_0 = 0.4 E_{\rm cr}$

- $E_0 = 0.4 E_{cr}$: More oscillations
- $E_0 \ge 0.7 E_{\rm cr}$: $n_{\rm nm}(\bar{t})$ increases
- $E_0 = 2E_{cr}$: Proportionality $n_{nm,j}(\infty) \approx j \cdot n_{nm}(\infty)$

	2	4
$n(t_{\rm max})/n_{\rm nm}(t_{\rm max})$	1.018	1.035
$n(\infty)/n_{ m nm}(\infty)$	1.724	3.316

Electron-Positron Pair Creation in Impulse-Shaped Electric Fields

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Pulse Length Dependence of $n_{nm}(t)$

E₀ = 0.1E_{cr}: n_{nm}(t
 inearly identical for all pulse lengths

 $E_0 = 0.7 E_{\rm cr}$

- $E_0 = 0.4 E_{cr}$: More oscillations
- $E_0 \ge 0.7 E_{\rm cr}$: $n_{\rm nm}(\bar{t})$ increases
- $E_0 = 2E_{cr}$: Proportionality $n_{nm,j}(\infty) \approx j \cdot n_{nm}(\infty)$

	2	4
$n(t_{\rm max})/n_{\rm nm}(t_{\rm max})$	1.083	1.314
$n(\infty)/n_{ m nm}(\infty)$	1.922	3.806

Florian Hebenstreit

Electron-Positron Pair Creation in Impulse-Shaped Electric Fields

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Pulse Length Dependence of $n_{nm}(t)$

E₀ = 0.1E_{cr}: n_{nm}(t
 inearly identical for all pulse lengths

 $E_0 = E_{\rm cr}$

- $E_0 = 0.4 E_{cr}$: More oscillations
- $E_0 \ge 0.7 E_{\rm cr}$: $n_{\rm nm}(\bar{t})$ increases
- $E_0 = 2E_{cr}$: Proportionality $n_{nm,j}(\infty) \approx j \cdot n_{nm}(\infty)$

	2	4
$n(t_{\rm max})/n_{\rm nm}(t_{\rm max})$	1.374	2.220
$n(\infty)/n_{ m nm}(\infty)$	1.964	3.910

Electron-Positron Pair Creation in Impulse-Shaped Electric Fields

Florian Hebenstreit

Single Particle Distribution Function $f(\mathbf{k}, t)$ Particle Number Density n(t)

Pulse Length Dependence of $n_{nm}(t)$

E₀ = 0.1E_{cr}: n_{nm}(t
 inearly identical for all pulse lengths

 $E_0 = 2E_{\rm cr}$

- $E_0 = 0.4 E_{cr}$: More oscillations
- $E_0 \ge 0.7 E_{\rm cr}$: $n_{\rm nm}(\bar{t})$ increases
- $E_0 = 2E_{cr}$: Proportionality $n_{nm,j}(\infty) \approx j \cdot n_{nm}(\infty)$

	2	4
$n(t_{\rm max})/n_{\rm nm}(t_{\rm max})$	1.898	3.728
$n(\infty)/n_{ m nm}(\infty)$	1.991	3.976

Florian Hebenstreit

Electron-Positron Pair Creation in Impulse-Shaped Electric Fields

Outline

Summary & Outlook

・ ロ ト ・ 雪 ト ・ 目 ト

Summary

- Particle creation is peaked around $p_{\parallel}=0$ and occurs for perpendicular momenta $k_{\perp}\lesssim 1\,{
 m MeV}$
- Sizeable asymptotic particle number densities $n_{\rm nm}(\infty)$ are only obtained for field strengths of the order $E_0 \gtrsim 0.4 E_{\rm cr}$
- The low-density / Markovian approximation overestimate $n_{\rm nm}(\infty)$ by more than 20% for field strenghts $E_0 \gtrsim 0.3 E_{\rm cr}$
- The backreaction mechanism becomes important for field strengths $E_0 \gtrsim E_{\rm cr}$

・ロト ・ 同ト ・ ヨト ・ ヨト

Sar

Summary

- Particle creation is peaked around $p_{\parallel}=0$ and occurs for perpendicular momenta $k_{\perp}\lesssim 1\,{
 m MeV}$
- Sizeable asymptotic particle number densities $n_{\rm nm}(\infty)$ are only obtained for field strengths of the order $E_0 \gtrsim 0.4E_{\rm cr}$
- The low-density / Markovian approximation overestimate $n_{\rm nm}(\infty)$ by more than 20% for field strenghts $E_0 \gtrsim 0.3 E_{\rm cr}$
- The backreaction mechanism becomes important for field strengths $E_0 \gtrsim E_{\rm cr}$

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Summary

- Particle creation is peaked around $p_{\parallel}=0$ and occurs for perpendicular momenta $k_{\perp}\lesssim 1\,{
 m MeV}$
- Sizeable asymptotic particle number densities $n_{nm}(\infty)$ are only obtained for field strengths of the order $E_0 \gtrsim 0.4E_{cr}$
- The low-density / Markovian approximation overestimate $n_{\rm nm}(\infty)$ by more than 20% for field strenghts $E_0 \gtrsim 0.3 E_{\rm cr}$
- The backreaction mechanism becomes important for field strengths $E_0 \gtrsim E_{\rm cr}$

・ ロ ト ・ 同 ト ・ 回 ト ・ 日 ト

Summary

- Particle creation is peaked around $p_{\parallel}=0$ and occurs for perpendicular momenta $k_{\perp}\lesssim 1\,{
 m MeV}$
- Sizeable asymptotic particle number densities $n_{\rm nm}(\infty)$ are only obtained for field strengths of the order $E_0 \gtrsim 0.4E_{\rm cr}$
- The low-density / Markovian approximation overestimate $n_{\rm nm}(\infty)$ by more than 20% for field strenghts $E_0 \gtrsim 0.3 E_{\rm cr}$
- The backreaction mechanism becomes important for field strengths $E_0 \gtrsim E_{\rm cr}$

・ ロ ト ・ (目 ト ・ 三 ト ・ 二 日 ト

Outlook

- Long term evolution for strong electric fields E₀ ≥ E_{cr} including the backreaction mechanism
- Including collisional effects by means of a relaxation time approximation
- Extending the pulse length to the order $t_{\rm pulse} \approx 10^{-15} \, {\rm s}$
- Derivation of a quantum kinetic equation for spatially inhomogeneous electric fields $E(\mathbf{x}, t)$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Outlook

- Long term evolution for strong electric fields E₀ ≥ E_{cr} including the backreaction mechanism
- Including collisional effects by means of a relaxation time approximation
- Extending the pulse length to the order $t_{\rm pulse} \approx 10^{-15} \, {\rm s}$
- Derivation of a quantum kinetic equation for spatially inhomogeneous electric fields $E(\mathbf{x}, t)$

・ ロ ト ・ 雪 ト ・ 目 ト

Sar

Outlook

- Long term evolution for strong electric fields E₀ ≥ E_{cr} including the backreaction mechanism
- Including collisional effects by means of a relaxation time approximation
- Extending the pulse length to the order $t_{pulse} \approx 10^{-15} \, \mathrm{s}$
- Derivation of a quantum kinetic equation for spatially inhomogeneous electric fields $E(\mathbf{x}, t)$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Sar

Outlook

- Long term evolution for strong electric fields E₀ 2 E_{cr} including the backreaction mechanism
- Including collisional effects by means of a relaxation time approximation
- Extending the pulse length to the order $t_{\rm pulse} \approx 10^{-15} \, {\rm s}$
- Derivation of a quantum kinetic equation for spatially inhomogeneous electric fields *E*(x, *t*)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ