A MECHANISM FOR QUARK CONFINEMENT IN QUENCHEP QUENCHEP

> REINHARD ALKOFER, CHRISTIAN FISCHER, FELIPE LLANES-ESTRADA & KAI SCHWENZER, UNIVERSITY OF GRAZ

FWF-FUNDED PROJECT

DESCRIPTION OF MATTER

THE PHYSICAL DEGREES OF FREEDOM OF MATTER AT LOW SCALES ARE QUITE DIFFERENT FROM THE UNDERLYING BUILDING BLOCKS

TECHNIC

7

IT WOULD BE VERY DESIRABLE TO HAVE A DIRECT CONNECTION OF THE PHYSICAL OBSERVABLES TO THE DYNAMICS OF THE FUNDAMENTAL LOCAL CONSTITUENTS

SOME KIND OF CONSTRUCTION MANUAL ...

--> DIANA NICMORUS' TALK

DEGREES OF FREEDOM

PERT. RG BREAKS DOWN

SCALE GENERATION

DESCRIPTION IN TERMS OF INITIAL LOCAL DEGREES OF FREEDOM COULD FAIL ...

AND IT DOES FOR SHORT RANGE FORCES

BUT NON-PERTURBATIVE DYNAMICS PREVENTS THIS FOR LONG RANGE GAUGE INTERACTIONS

H. GIES, PHYS. REV. D 66 (2002) 025006

GAUGE FIXING

CONTINUUM DESCRIPTION REQUIRES TO FIX A GAUGE

NON-COVARIANT GAUGE (COULOMB)

STATIC CONFINING POTENTIAL IN SIMPLE TRUNCATION

P. WATSON, H. REINHARD, ARXIV:0709.0140 [HEP-TH]

BUT ALREADY PERTURBATION THEORY IS HARD!

COVARIANT GAUGE (LANDAU) - INVOLVES GHOSTS

UV REGIME AND SPONTANEOUS CHIRAL SYMMETRY BREAKING OBTAINED RATHER DIRECTLY

CHALLENGE: QUARK CONFINEMENT

EVENTUALLY ONE WOULD LIKE TO UNDERSTAND HOW THEY ARE CONNECTED (INTERPOLATING GAUGES)

GAUGE SECTOR

YANG-MILLS DSES

IR-ANALYSIS

CONFINEMENT IS A LONG RANGE / IR PHENOMENON

CLASSICAL YANG-MILLS THEORY IS "CONFORMAL" BUT QUANTUM FLUCTUATIONS INDUCE A SCALE Λ_{QCD}

RENORMALIZATION GROUP:

FAR BELOW THIS SCALE GREENS FUNCTIONS SHOULD BE DESCRIBED BY SOME SCALING SOLUTION

AFTER THE TENSOR DECOMPOSITION THE INTEGRALS WITHIN THE DSES ARE DOMINATED BY THE POLES OF THE INTEGRANDS

 I_{-} $(2\pi)^{d}$ $((k+p)^2)^{
u_1}$ $((k-q)^2)^{
u_2}$ $(k^2)^{
u_3}$

POWER COUNTING

THE PARAMETRIC IR-DEPENDENCE OF THE INTEGRALS ON THE EXTERNAL SCALE CAN BE OBTAINED VIA A POWER COUNTING ANALYSIS

WITHOUT NUMERICALLY SOLVING THE DSES

LEADING LOOP CORRECTION & LEADING TENSOR STRUCTURE DOMINATES AND DETERMINES SCALING OF THE VERTEX --> ALGEBRAIC EQUATIONS FOR EXPONENTS

E.G. GLUON DSE

 $\boxed{} \underbrace{}_{-1} = \underbrace{}_{-1} \underbrace{$

SOLVABLE SYSTEM OF SUCH ALGEBRAIC EQUATIONS

MANDELSTAM SOLUTION

SIMPLEST SELF-CONSISTENT DSE TRUNCATION IN LANDAU GAUGE 5. MANDELSTAM, PHYS. REV. D 20 (1979) 3223

• ONLY GLUON DSE SOLVED

GHOST DYNAMICS NEGLECTED

STRONG GLUON INTERACTION

IR-ENHANCED GLUON-PROPAGATOR 1/q

CONFINING FORCES - "INFRARED SLAVERY"

G. WEST, PHYS. LETT. B 115 (1983) 468

SIMPLE PICTURE ... BUT DOES NOT SEEM TO BE REALIZED

R. ALKOFER, M. HUBER AND K. SCHWENZER, 0801.2762 [HEP-TH]

INCLUDING GHOSTS ...

GHOST-DOMINANCE!?

KUGO-OJIMA SCENARIO

INFRARED LIMIT FOR THE COUPLING

NEW LATTICE DATA

CHALLENGING RECENT DATA ON LARGE LATTICES

CUCCHIERI, T. MENDES 0710.0412 [HEP-LAT]

POINT TO A SMALLER IR-SCALING PARAMETER AROUND 0.5 (CLUON MASS)

PROBLEMS WITH GRIBOV COPIES?

A. MAAS, IN PREPARATION

GENERAL PICTURE IS NOT AFFECTED BY THIS!

YANG-MILLS VERTICES & GHOST DOMINANCE

DYNAMICAL VERTICES

SOFT SINGULARITIES

ANALYTIC IR-RESULT FOR THE SCALAR VERTEX ENTERING THE 3-GLUON VERTEX (AGREES WITH NUMERICAL STUDY)

FACTORIZES IN A SCALING PART AND A KINEMATIC FUNCTION

$$\Gamma_{\rm IR}(p^2, q^2, r^2) = \gamma \left(\frac{q^2}{p^2}, \frac{r^2}{p^2}\right) (p^2)^{-3\kappa}$$

ADDITIONAL KINEMATIC ("SOFT") SINGULARITIES WHEN A SINGLE GLUON MOMENTUM VANISHES

SOFT SCALING

MATTER SECTOR & QUARK-GLUON VERTEX

PROPAGATOR SOLUTION

DSE FOR THE QUARK PROPAGATOR

Two different tensor structures in the IR regime

• VECTOR PART ~ $\frac{p}{M^2}$ & SCALAR PART ~

 $^{-1}$

 SPONTANEOUS CHIRAL SYMMETRY
 BREAKING IN THE REINHARD ALKOFER & CHRISTIAN FISCHER
 PROPAGATOR PHYS. REV. D 67 (2003) 094020

NO EXPLICIT POSITIVITY VIOLATIONS AND NO STRONG GLUONIC INTERACTIONS --> QUARKS ARE NOT CONFINED

QUARK-GLUON DSE

VERTEX DSE

- SKELETON
 EXPANSION
 CRUCIAL
- ABELIAN GRAPH N_c -SUPPRESSED

- NON-ABELIAN GRAPH IS "GHOST ENHANCED"
- THE 12 POSSIBLE TENSORS FALL INTO TWO CLASSES ACCORDING TO THEIR DIRAC STRUCTURE
 - VECTOR PART (ODD): γ^{μ} , $p^{\alpha}_{i}\gamma_{\alpha}p^{\mu}_{j}$, $p_{1,\alpha}p_{2,\beta}\sigma^{\alpha\beta}\gamma^{\mu}$
 - SCALAR PART (EVEN): p_i^{μ} , $p_i^{\alpha}\gamma_{\alpha}\gamma^{\mu}$, $p_{1,\alpha}p_{2,\beta}\sigma^{\alpha\beta}p_i^{\mu}$

IR-ANALYSIS

- THE DIRAC STRUCTURE DOES NOT ALLOW ALL POSSIBLE SCALAR/VECTOR COMBINATIONS WITHIN A GIVEN GRAPH
 - E.G. SCALAR QUARK DSE:

- TENSOR BASIS THAT SHOWS THE ALL QUALITATIVE FEATURES OF THE FULL SOLUTION (COMPLETE IN THE KINEMATIC LIMIT q = 2p):
 - PROPAGATOR (HEAVY MASS LIMIT): $S(p) \rightarrow \frac{iZ_f \not p}{M^2} + \frac{Z_f}{M}$
 - VERTEX :

 $\Gamma_{\mu}(p^2) = ig\left(\lambda_1(p^2)\gamma_{\mu} + \lambda_2(p^2)\hat{p}_{\mu} + \lambda_3(p^2)\not p\hat{p}_{\mu} + \lambda_4(p^2)\not p\gamma_{\mu}\right)$

IR-SOLUTION

- IN GENERAL DIFFERENT IR-SCALING FOR THE DIFFERENT STRUCTURES $\lambda_i(p^2) = c_i(p^2)^{\beta_i}$
- SOLUTION OF THE LENGTHY SYSTEM OF EQUATIONS FOR THE UNIFORM IR-EXPONENTS IN THE MASSIVE CASE

$$\beta_1 = \beta_2 = \beta_3 = -1/2 - \kappa , \ \beta_4 = 0$$

STRONGLY IR-DIVERGENT VERTEX

R.ALKOFER, C.S.FISCHER & F.J.LLANES-ESTRADA, HEP-PH/0607293

- CHIRAL SYMMETRY BREAKING SCALAR PARTS PRESENT!
- SOLUTION CONFIRMED BY NUMERICAL COMPUTATIONS OF THE REDUCED DSE SYSTEM

POSSIBLY DIFFERENT SOLUTION(S) FOR CHIRAL QUARKS

RUNNING COUPLING

RUNNING COUPLING FROM THE QUARK GLUON VERTEX

$$\alpha^{q/g}(p^2) = \alpha_\mu (\Gamma^{q/g}(p^2))^2 Z_f^2(p^2) Z(p^2) \to \infty$$

ENHANCED VERTEX COULD OVERTURN THE SUPPRESSION OF THE GLUON PROPAGATOR

BUT ONLY IN THE UNIFORM LIMIT $p_i^2
ightarrow 0$, $\forall i$

CORRESPONDS TO THE LIGHT CONE IN MINKOWSKI SPACE

NO TOTAL CONFINEMENT FOR MASSIVE QUARKS

A MECHANISM FOR QUARK CONFINEMENT

SOFT IR-SINGULARITY

THE QUARK-GLUON VERTEX HAS AN ADDITIONAL SOFT DIVERGENCE WHEN ONLY THE GLUON VANISHES

MILD SOFT DIVERGENCE OF THE 3-GLUON VERTEX INDUCED IN THE NON-ABELIAN GRAPH

AND EVEN SELF-CONSISTENTLY ENHANCED!

SAME STRONG IR-SCALING IN THE SOFT GLUON LIMIT FOR ARBITRARY QUARK KINEMATICS APPLICATION --> RICHARD WILLIAMS' TALK

SUPPORTED BY FIRST NUMERICAL RESULTS ...

SOFT IR-SINGULARITY

THE QUARK-GLUON VERTEX HAS AN ADDITIONAL SOFT DIVERGENCE WHEN ONLY THE GLUON VANISHES

MILD SOFT DIVERGENCE OF THE 3-GLUON VERTEX INDUCED IN THE NON-ABELIAN GRAPH

AND EVEN SELF-CONSISTENTLY ENHANCED!

SAME STRONG IR-SCALING IN THE SOFT GLUON LIMIT FOR ARBITRARY QUARK KINEMATICS APPLICATION --> RICHARD WILLIAMS' TALK

SUPPORTED BY FIRST NUMERICAL RESULTS ...

QUENCHED IR-SYSTEM

GAUGE CORRELATORS AS AN INPUT

DIFFERENT KINEMATIC LIMITS (UNIFORM & SOFT)

SCALAR & VECTOR TENSORS BEHAVE DIFFERENTLY

QUENCHED IR-SOLUTION

- DIFFERENT IR EXPONENTS FOR UNIFORM AND KINEMATIC SINGULARITIES
- EMPLOY NECESSARY CONDITIONS FOR A SKELETON EXPANSION

- **SYSTEM SIMPLIFIES STRONGLY**
 - UNIFORM AND SOFT-GLUON SECTORS DECOUPLE
 - •• •• NEARLY UNIQUE'' SOLUTION: $\delta_{qgs}^{gl} = \min\left(2\delta_{qgs}^{gl} + \frac{1}{2} + \kappa, 2\delta_{qgv}^{gl} + \frac{1}{2} + \kappa, 1 2\kappa\right)$

(...)

δ_{gh}	δ_{gl}	δ_q	δ^u_{gg}	δ^u_{3g}	δ^u_{qg}	δ^{gh}_{gg}	δ^{gl}_{gg}	δ^{gl}_{3g}	δ^q_{qg}	δ_{i}	gl 19	\forall
$-\kappa$	2κ	0	0	-3κ	$\left -\frac{1}{2}-\kappa\right \vee 1{-}2\kappa$	0	$1-2\kappa$	$1-2\kappa$	0	$-\frac{1}{2}-\kappa$	$\vee 1-2\kappa$	$1/2 \le \kappa \le 3/4$

NUMERICAL ANALYSIS

MILD SOFT DIVERGENCE FROM 3-GLUON VERTEX AS INPUT

SELF-CONSISTENT SOLUTION OF THE QUARK PROPAGATOR

SINGLE ITERATION OF THE VERTEX INTEGRAL

SINGULARITY STRONGLY ENHANCED

VERY LIKELY THAT THE SOLUTION IS ACTUALLY REALIZED

QUARK CONFINEMENT

QUARK GLUON VERTEX INDUCES QUARK-QUARK INTERACTION

QUARK CONFINEMENT DUE TO A IR-DIVERGENT QUARK-QUARK SCATTERING KERNEL

 $T^{4q} \sim 1/p^4$

LINEAR RISING INTERACTION WHENEVER THE QUARKS ARE FAR APART

INFRARED SLAVERY

DIFFERENT MECHANISM THAN FOR THE GLUONS

ONLY POSSIBLE IF CHIRAL SYMMETRY IS BROKEN

DECONFINEMENT

- IN THE CHIRAL SYMMETRIC REGIME THE SYMMETRY-BREAKING TENSORS VANISH
- COUPLED (GAUGE/MATTER SECTOR) ANALYSIS NECESSARY
- DIFFERENT SOLUTION, E.G. AT MOST: $\beta_1 = \beta_3 = -\kappa$

TOO WEAK SINGULARITIES

CHIRAL RESTORATION AND DECONFINEMENT TRANSITION SIMULTANEOUS

IN AGREEMENT WITH (SOME) LATTICE RESULTS

F. KARSCH, LECT. NOTES PHYS. 583 (2002) 209

A MECHANICAL ANALOG

SIMPLE PICTURE FOR ORDINARY CHIRAL SYMMETRY BREAKING

- POTENTIAL FROM BOSONIZA-TION OF SHORT RANGED FORCE
- MINIMUM POSITION DETERMINES THE QUARK MASS

VERTEX ENHANCED CHIRAL SYMMETRY BREAKING

- BENDING OF THE ELASTIC
 BAND IS ANALOG TO THE SIZE
 OF THE SCALAR VERTEX PART
- BOTH MECHANISM ARE LINKED

CONCLUSION

NOVEL MECHANISM FOR TOTAL QUARK CONFINEMENT IN LANDAU GAUGE QCD

- RELIES ON THE VERTEX AND NOT ON THE PROPAGATOR
- QUALITATIVELY CONSISTENT WITH YM LATTICE DATA
- VALID FOR ARBITRARY QUARK KINEMATICS DUE TO SOFT-GLUON SINGULARITIES
- OLD INFRARED SLAVERY PICTURE VERY DIFFERENT FROM THE CONFINEMENT MECHANISMS FOR GLUONS
- DYNAMICAL CONNECTION BETWEEN CHIRAL SYMMETRY BREAKING & CONFINEMENT

OUTLOOK

- GAUGE INVARIANT FORMULATION VIA WILSON LOOP
- IMPROVED YANG-MILLS IR-FIXPOINT
- UNQUENCHING EFFECTS & STRING BREAKING
 - DSES ARE A FRAMEWORK TO STUDY THIS
 - FIRST HINTS THAT THE IR-FIXPOINT INDEED CHANGES WHEN QUARK LOOPS ARE INCLUDED
 - BECOMES A PROBLEM OF FINITE (HADRONIC) SCALES WHERE WHICH MECHANISM DOMINATES

ANALYSIS OF THE HADRON SPECTRUM