Solution in the IR

IR Fixed Point and Ghost Dominance in Landau Gauge Yang Mills Theory

R. Alkofer Markus Q. Huber K. Schwenzer

Department of Phyics, Karl-Franzens University Graz

Jan. 24, 2008

Non-Perturbative Functional Methods in Quantum Field Theory, Hévíz

SIC!QFT

Alkofer, Huber, Schwenzer

Landau Gauge DSE: 00000 Solution in the IR

Summary

Table of Contents

- 1 Introduction
 - Infrared QCD
- 2 Landau Gauge DSEs
 - Propagators and Running Coupling
- 3 Solution in the IR
 - Power Counting
 - Qualitative Analytic Solution

Solution in the IR

Summary

Infrared QCD

- Infrared cannot be described by perturbative methods → non-perturbative methods like ERGE, nPl, lattice and DSEs
- Aspects of the IR: Chiral symmetry breaking, confinement
- In Landau gauge two promising confinement scenarios exist
 - Kugo-Ojima
 - Gribov-Zwanziger

 \rightarrow ghost propagator divergent, gluon propagator finite/vanishing in IR

Introduction

andau Gauge DSEs

Solution in the IR

Summary

Behavior of the Gluon Propagator

$$D_{\mu
u}(p) = \left(\delta_{\mu
u} - rac{p_{\mu}p_{
u}}{p^2}
ight)rac{Z(p^2)}{p^2}$$

Divergent gluon propagator (IR slavery, confining gluons):

- $Z(p^2)$ singular
- at most $Z(p^2) \propto 1/p^2$
- linear rising quark potential
- result of DSEs without ghosts (Mandelstam approximation)

Vanishing gluon propagator (confined gluons):

- $Z(p^2)$ vanishes faster than p^2
- gluons do not propagate over long distances
- result of DSEs incl. ghosts [von Smekal, Alkofer, Hauck, Phys.Rev.Lett.79]

• Restrict to pure Yang-Mills

Simplifications:

- Restrict to pure Yang-Mills
- Absorb tadpole in renormalization

- Restrict to pure Yang-Mills
- Absorb tadpole in renormalization

Neglect two-loop graphs

Simplifications:

- Restrict to pure Yang-Mills
- Absorb tadpole in renormalization

Alkofer, Huber, Schwenzer

Neglect two-loop graphs

• Ansätze for vertices

KFU Graz

Landau Gauge DSEs ○●○○○ Solution in the IR 000000 0000 Summary

Solution at the Level of the Propagators

- Vanishing gluon propagator, IR exponent 2κ
- Diverging ghost propagator, IR exponent $-\kappa$

Landau Gauge DSEs

Solution in the IR

Summary

Vertex DSEs

Three-gluon vertex:

Alkofer, Huber, Schwenzer

Landau Gauge DSEs

Solution in the IR

Summary

Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

Landau Gauge DSEs

Solution in the IR

Summary

Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

$$(q-p)_{\mu}D_{\mu\nu}(q-p)=0 \Rightarrow q_{\mu}D_{\mu\nu}(q-p)=p_{\mu}D_{\mu\nu}(q-p)$$

Landau Gauge DSEs

Solution in the IR

Summary

Ghost-Gluon Vertex

Starting point is transversal gluon propagator in Landau gauge:

$$k_{\mu}D_{\mu\nu}(k) = k_{\mu}\frac{Z(k)}{k^2}\left[\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right] = 0$$

$$(q-p)_{\mu}D_{\mu\nu}(q-p)=0 \Rightarrow q_{\mu}D_{\mu\nu}(q-p)=p_{\mu}D_{\mu\nu}(q-p)$$

 \Rightarrow Ghost-gluon vertex bare in the IR

Landau Gauge DSEs 00000

Running Coupling

Introduction 00

Landau Gauge DSEs 0000● Solution in the IR

Summary

Running Coupling

Gluon vertices have a running coupling orders smaller than the ghost gluon vertex

 \rightarrow Indication that ghosts domi-

nate in the IR.

Landau Gauge DSEs

Solution in the IR

Summary

Propagators

• IR behavior can be determined from the ghost DSE:

Intr	οс	lu	ct	io	n
00					

Landau Gauge DSEs 00000 Solution in the IR

Summary

Propagators

• IR behavior can be determined from the ghost DSE:

- Use bare ghost-gluon vertex
- Power law ansätze for dressing functions in the IR

andau Gauge DSEs

Solution in the IR

Summary

Propagators

• IR behavior can be determined from the ghost DSE:

- Use bare ghost-gluon vertex
- Power law ansätze for dressing functions in the IR

$$\left(\frac{B\cdot(p^2)^{\beta}}{p^2}\right)^{-1}\sim\int\frac{d^d q}{(2\pi)^d}P_{\mu\nu}\frac{A\cdot(q^2)^{\alpha}}{q^2}\frac{B\cdot((p-q)^2)^{\beta}}{(p-q)^2}(p-q)_{\mu}q_{\nu}$$

andau Gauge DSEs

Solution in the IR

Summary

Propagators

• IR behavior can be determined from the ghost DSE:

- Use bare ghost-gluon vertex
- Power law ansätze for dressing functions in the IR

$$\left(\frac{B\cdot(p^2)^{\beta}}{p^2}\right)^{-1}\sim\int\frac{d^d q}{(2\pi)^d}P_{\mu\nu}\frac{A\cdot(q^2)^{\alpha}}{q^2}\frac{B\cdot((p-q)^2)^{\beta}}{(p-q)^2}(p-q)_{\mu}q_{\nu}$$

 Only one momentum scale → simple power counting is possible:

$$1 - \beta = \frac{d}{2} + \alpha - 1 + \beta - 1 + \frac{1}{2} + \frac{1}{2} \Longrightarrow -2\beta = \alpha + \frac{d}{2} - 2$$

Landau Gauge DSEs 00000 Solution in the IR

Summary

Propagators

• IR behavior can be determined from the ghost DSE:

-----⁻¹ = -----⁻¹ - ------

- Use bare ghost-gluon vertex
- Power law ansätze for dressing functions in the IR

$$\left(\frac{B\cdot(p^2)^{\beta}}{p^2}\right)^{-1}\sim\int\frac{d^d q}{(2\pi)^d}P_{\mu\nu}\frac{A\cdot(q^2)^{\alpha}}{q^2}\frac{B\cdot((p-q)^2)^{\beta}}{(p-q)^2}(p-q)_{\mu}q_{\nu}$$

- Only one momentum scale → simple power counting is possible:
- Analytic result: $-\beta \equiv \kappa = 0.59...$

Landau Gauge DSEs

Solution in the IR

Summary

Skeleton Expansion

How to treat more complicated graphs?

Solution in the IR

Summary

Skeleton Expansion

Employ skeleton expansion

 \sim loop expansion with dressed quantities

Solution in the IR

Summary

Skeleton Expansion

Employ skeleton expansion

 \sim loop expansion with dressed quantities

All orders have the same IR exponent, (insertions generating higher orders give no additional contributions).

Landau Gauge DSEs

Solution in the IR

Summary

Skeleton Expansion

Skeleton expansion \implies calculation of the IR exponent of an

arbitrary vertex function with 2n external ghosts and m external gluons:

$$\delta_{2\boldsymbol{n},\boldsymbol{m}} = (\boldsymbol{n} - \boldsymbol{m})\kappa + (1 - \boldsymbol{n})\left(\frac{\boldsymbol{d}}{2} - 2\right)$$

All orders have the same IR exponent, (insertions generating higher orders give no additional contributions).

Solution in the IR

Summary

Refined Power Counting

- \bullet Assumption up to now: All external momenta vanish \rightarrow unique solution
- Allow for subsets of external momenta to vanish, but still all momenta in the IR → different solution possible?
- Limits for the three-point vertices that do not violate the old solution:
 - ullet vanishing gluon momentum: $1-2\kappa$
 - vanishing ghost momentum: 0
- Power counting for single diagrams → system of inequalities that can be solved.
- Necessary assumption: existence of an skeleton expansion.

Landau Gauge DSEs

Solution in the IR

Summary

Example of Power Counting

Single graphs either dominate the IR behavior or are subleading \rightarrow inequality relations

Landau Gauge DSEs

Solution in the IR

Summary

Example of Power Counting

Single graphs either dominate the IR behavior or are subleading \rightarrow inequality relations

Solution in the IR

Results from Power Counting

- Singularities possible if only one momentum goes to 0.
- The singularities saturate the maximal allowed limit from the uniform solution (0 and $1-2\kappa$).
- The possible value of κ can be restricted to $1/2 \le \kappa \le 3/4$.
- Gluon propagator exponent cannot be negative → no "confining" gluons.
- Unique solution for the IR exponents.

Landau Gauge DSEs

Solution in the IR

Summary

Qualitative Behavior

• Ghost propagator is divergent.

δ_{gh}	δ_{gI}	δ_{gg}	δ_{3g}	δ^{gh}_{gg}	δ^{g}_{gg}	δ^{g}_{3g}	A
$-\kappa$	2κ	0	-3κ	0	$1-2\kappa$	$1-2\kappa$	$1/2 \le \kappa \le 3/4$

Landau Gauge DSEs

Solution in the IR

Summary

- Ghost is divergent.
- Gluon propagator is vanishing.

δ_{gh}	δ_{gl}	δ_{gg}	δ_{3g}	δ^{gh}_{gg}	δ^{g}_{gg}	δ^{g}_{3g}	\forall
$-\kappa$	2κ	0	-3κ	0	$1-2\kappa$	$1-2\kappa$	$1/2 \le \kappa \le 3/4$

Landau Gauge DSE 00000 Solution in the IR

Summary

- Ghost is divergent.
- Gluon is vanishing.
- Uniform exponents give a constant ghost-gluon and a divergent three-gluon vertex.

δ_{gh}	δ_{gl}	δ_{gg}	δ_{3g}	δ^{gh}_{gg}	$\delta^{g \prime}_{gg}$	$\delta^{g/}_{3g}$	\forall
$-\kappa$	2κ	0	-3κ	0	$1-2\kappa$	$1-2\kappa$	$1/2 \le \kappa \le 3/4$

Landau Gauge DSE 00000 Solution in the IR

Summary

- Ghost is divergent.
- Gluon is vanishing.
- Uniform exponents give a constant ghost-gluon and a divergent three-gluon vertex.
- A vanishing ghost momentum gives a constant ghost-gluon vertex.

Landau Gauge DSEs

Solution in the IR

Summary

- Ghost is divergent.
- Gluon is vanishing.
- Uniform exponents give a constant ghost-gluon and a divergent three-gluon vertex.
- A vanishing ghost momentum gives a constant ghost-gluon vertex.
- A vanishing gluon momentum gives a light divergence for the three-point vertices.

δ_{gh}	δ_{gl}	δ_{gg}	δ_{3g}	δ^{gh}_{gg}	δ^{gI}_{gg}	δ^{gI}_{3g}	A
$-\kappa$	2κ	0	-3κ	0	$1-2\kappa$	$1-2\kappa$	$1/2 \le \kappa \le 3/4$

Landau Gauge DSEs 00000 Solution in the IR

Summary

Propagators

Loop integrals can be calculated for arbitrary dimensions d and exponents ν_i using

$$\int \frac{d^{d}q}{(2\pi)^{d}} (q^{2})^{\nu_{1}} ((q-\rho)^{2})^{\nu_{2}} =$$

= $(4\pi)^{-\frac{d}{2}} \frac{\Gamma(\frac{d}{2}+\nu_{1})\Gamma(\frac{d}{2}+\nu_{2})\Gamma(-\nu_{1}-\nu_{2}-\frac{d}{2})}{\Gamma(-\nu_{1})\Gamma(-\nu_{2})\Gamma(d+\nu_{1}+\nu_{2})} (\rho^{2})^{\frac{d}{2}+\nu_{1}+\nu_{2}}.$

 \rightarrow Power law as expected

andau Gauge DSEs

Solution in the IR

Summary

Three-Point Functions

Solution for 3-point functions in terms of Appell's functions $F_4(x, y)$

$$x = p_2^2/p_1^2, \quad y = p_3^2/p_1^2$$

Analytic continuation necessary

Alkofer, Huber, Schwenzer

andau Gauge DSEs

Solution in the IR

Summary

Three-Point Functions

Solution for 3-point functions in terms of Appell's functions $F_4(x, y)$

$$x = p_2^2/p_1^2, \quad y = p_3^2/p_1^2$$

andau Gauge DSEs

Solution in the IR

Summary

Three-Point Functions

Solution for 3-point functions in terms of Appell's functions $F_4(x, y)$

$$x = p_2^2/p_1^2, \quad y = p_3^2/p_1^2$$

andau Gauge DSEs

Solution in the IR

Summary

Three-Point Functions

Solution for 3-point functions in terms of Appell's functions $F_4(x, y)$

$$x = p_2^2/p_1^2, \quad y = p_3^2/p_1^2$$

andau Gauge DSEs

Solution in the IR

Summary

Three-Point Functions

Solution for 3-point functions in terms of Appell's functions $F_4(x, y)$

$$x = p_2^2/p_1^2, \quad y = p_3^2/p_1^2$$

andau Gauge DSEs

Solution in the IR

Summary

Tensors of the Ghost Triangle (Three-Gluon Vertex)

Tensor decomposition à la Davydychev: 10 tensors (instead of 14) are relevant in the IR.

Singularities are in agreement with power counting constraints.

Landau Gauge DSEs

Solution in the IR

Summary

Dependence on Infrared Exponent

How much influence has the numerical value of κ on the ghost triangle?

andau Gauge DSEs

Solution in the IR

Summary

Dependence on Infrared Exponent

How much influence has the numerical value of κ on the ghost triangle?

Overlap of the tree-level tensor with the ghost-triangle for d = 2, 3 and 4:

Dependence on κ is only weak in relevant region

 \rightarrow Ghost dominance seems to be a robust mechanism

Landau Gauge DSEs

Solution in the IR

Summary

Summary

• Gluon propagator is vanishing in the IR.

Landau Gauge DSEs 00000 Solution in the IR

Summary

- Gluon propagator is vanishing in the IR.
- Ghost propagator diverges and ghost contributions dominate in the IR.

Landau Gauge DSEs 00000 Solution in the IR

Summary

- Gluon propagator is vanishing in the IR.
- Ghost propagator diverges and ghost contributions dominate in the IR.
- Yang-Mills theory has an IR fixed point.

Landau Gauge DSEs

Solution in the IR

Summary

- Gluon propagator is vanishing in the IR.
- Ghost propagator diverges and ghost contributions dominate in the IR.
- Yang-Mills theory has an IR fixed point.
- Refined power counting allows singularities, but does not change the FP.

Landau Gauge DSEs 00000 Solution in the IR

Summary

- Gluon propagator is vanishing in the IR.
- Ghost propagator diverges and ghost contributions dominate in the IR.
- Yang-Mills theory has an IR fixed point.
- Refined power counting allows singularities, but does not change the FP.
- Numerical results in agreement with power counting analysis.

Landau Gauge DSEs

Solution in the IR

Summary

- Gluon propagator is vanishing in the IR.
- Ghost propagator diverges and ghost contributions dominate in the IR.
- Yang-Mills theory has an IR fixed point.
- Refined power counting allows singularities, but does not change the FP.
- Numerical results in agreement with power counting analysis.
- Results very stable when changing $0.5 \le \kappa \le 0.75$.

Landau Gauge DSEs

Solution in the IR

Summary

Summary

- Gluon propagator is vanishing in the IR.
- Ghost propagator diverges and ghost contributions dominate in the IR.
- Yang-Mills theory has an IR fixed point.
- Refined power counting allows singularities, but does not change the FP.
- Numerical results in agreement with power counting analysis.
- Results very stable when changing $0.5 \le \kappa \le 0.75$.

Thank you for your attention!

