

Bethe-Salpeter equation studies of mesons: recent progress and challenges

A. Krassnigg (University of Graz, Austria)

Work with:

A. Höll, C. D. Roberts, S. V. Wright (ANL, PHY)

Work performed at/supported by/in collaboration with:

Austrian Research Foundation FUIF

Argonne National Laboratory

Outline

- QCD and hadrons
- DSE-BSE

- Solution strategies
- Mesons and their properties
- Symmetries ↔ exact results
- Example (sophisticated) Ansatz
- Example results
- Conclusions and outlook

• How can we describe nature?

Motivation

How can we describe nature?

With the Force!

Motivation

The Force?

Andreas Krassnigg, Heviz, 24th January 2008 - p. 3/3

FШF

Well, the Force is what gives a Jedi his power. It's an energy field created by all living things. It surrounds us and penetrates us. It binds the galaxy together.

Motivation

Dyson Schwinger Equations: a modern method in relativistic QFT

P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12 (2003) 297
R. Alkofer and L. von Smekal, Phys. Rept. 353 (2001) 281
C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45 (2000) S1
A. Holl, C. D. Roberts, S. V. Wright, nucl-th/0601071
C. S. Fischer, J. Phys. G 32 (2006) R253

 Dyson Schwinger Equations: a modern method in relativistic QFT

P. Maris and C. D. Roberts, Int. J. Mod. Phys. E **12** (2003) 297 R. Alkofer and L. von Smekal, Phys. Rept. **353** (2001) 281 C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys. 45 (2000) S1 A. Holl, C. D. Roberts, S. V. Wright, nucl-th/0601071 C. S. Fischer, J. Phys. G **32** (2006) R253

- Study hadrons as composites of quarks and gluons
- ... including:

- Chiral symmetry and $D\chi SB$
- correct perturbative limit (via $\alpha_p(Q^2)$)
- quark and gluon confinement
- Poincaré covariance
- Propagators and Bethe-Salpeter amplitudes
 → observables

 Solutions: Schwinger functions (Euclidean Green functions) (also calculated on the lattice)

 Solutions: Schwinger functions (Euclidean Green functions) (also calculated on the lattice)

- Each function satisfies integral equation involving other functions ⇒
- Infinite set of coupled integral equations
- Truncation scheme necessary \Rightarrow
- Generating tool for perturbation theory

- Solutions: Schwinger functions (Euclidean Green functions) (also calculated on the lattice)
- Each function satisfies integral equation involving other functions ⇒
- Infinite set of coupled integral equations
- Truncation scheme necessary \Rightarrow
- Nonperturbative truncation scheme
- Respect symmetries

- Prove exact (model independent) results
- Devise (sophisticated) models to illustrate them

Gap Equation

 $S(p) = \frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}$

Gap Equation

- Weak coupling expansion reproduces every diagram in perturbation theory, but:
- Perturbation theory: $m_{\zeta} = 0 \Rightarrow M(p^2) \equiv 0$

ΓШΓ

Quark Mass Function

Solution of gap equation:

P. Maris, C. D. Roberts, Phys. Rev. C56, 3369 (1997)

Quark Mass Function

S(p)

 $\frac{Z(p^2)}{i\gamma \cdot p + M}$

Solution of gap equation:

P. Maris, C. D. Roberts, Phys. Rev. **C56**, 3369 (1997)

Andreas Krassnigg, Heviz, 24th January 2008 - p. 7/3

Quark Mass Function

Solution of gap equation:

P. Maris, C. D. Roberts, Phys. Rev. C56, 3369 (1997)

Inhomogeneous BSE

• BSE for $q\bar{q}$ or qq bound states ($\chi = S \Gamma_H S$)

$$\Gamma_H(p; P) = \mathsf{d.t.} + \int d^4q \ \chi(q; P) \ K(q, p; P)$$

- Gap eq. output → BSE input
- Bound state at $P^2 = -m_H^2$:

$$\Gamma_H(q;P) = rac{r_H \ \Gamma_h(q;P)}{P^2 + m_H^2} + \text{regular terms}$$

Inhomogeneous BSE

• 0^{-+} , 0^{++} , and 1^{--} meson amplitudes

• BSE for $q\bar{q}$ or qq bound states ($\chi = S \Gamma_h S$)

$$\Gamma_{h tu}(p; P) \qquad = \int d^4q \ [\chi(q; P)]_{sr} \ K_{rs}^{tu}(q, p; P) \,.$$

• BSE for $q\bar{q}$ or qq bound states ($\chi = S \Gamma_h S$)

$$\Gamma_{h\ tu}(p;P)\ \lambda(P^2) = \int d^4q \ [\chi(q;P)]_{sr}\ K^{tu}_{rs}(q,p;P) \,.$$

homogeneous → eigenvalue equation

Solution Strategy

Solution strategy for homogeneous BSE

AV WTI

• Axial-vector Ward-Takahashi identity $P_{\mu}\Gamma_{5\mu}^{j}(k;P) = S^{-1}(k_{+})i\gamma_{5}\frac{\tau^{j}}{2} + i\gamma_{5}\frac{\tau^{j}}{2}S^{-1}(k_{-})$ $-2im(\zeta)\Gamma_{5}^{j}(k;P),$

AV WTI

• Axial-vector Ward-Takahashi identity

$$P_{\mu}\Gamma^{j}_{5\mu}(k;P) = S^{-1}(k_{+})i\gamma_{5}\frac{\tau^{j}}{2} + i\gamma_{5}\frac{\tau^{j}}{2}S^{-1}(k_{-}) - 2im(\zeta)\Gamma^{j}_{5}(k;P),$$

• Consequence (residues):

$$f_{\pi_n} m_{\pi_n}^2 = 2 m(\zeta) \rho_{\pi_n}(\zeta);$$

• Axial-vector Ward-Takahashi identity

$$P_{\mu}\Gamma_{5\mu}^{j}(k;P) = S^{-1}(k_{+})i\gamma_{5}\frac{\tau^{j}}{2} + i\gamma_{5}\frac{\tau^{j}}{2}S^{-1}(k_{-}) - 2im(\zeta)\Gamma_{5}^{j}(k;P),$$

• Consequence (residues):

$$f_{\pi_n} m_{\pi_n}^2 = 2 m(\zeta) \rho_{\pi_n}(\zeta);$$

- valid for every pseudoscalar meson
- valid for every current quark mass
- \Rightarrow GMOR, PCAC

P. Maris, C. D. Roberts, Phys. Rev. C56, 3369 (1997)
A. Höll, A. K., and C. D. Roberts, Phys. Rev. C 70, 042203 (2004)

Mass Formula

• Investigate the chiral limit of

$$f_{\pi_n} m_{\pi_n}^2 = 2 m(\zeta) \rho_{\pi_n}(\zeta);$$

• Investigate the chiral limit of

$$f_{\pi_n} m_{\pi_n}^2 = 2 m(\zeta) \rho_{\pi_n}(\zeta);$$

• Investigate the chiral limit of

$$f_{\pi_n} m_{\pi_n}^2 = 2 m(\zeta) \rho_{\pi_n}(\zeta);$$

FШF

• Excited state pion:

- Rainbow approximation for gap equation
- Ladder approximation for BSE

- Effective coupling ${\mathcal G}$
- Bare quark-gluon vertex γ_{ν}
- Bare gluon propagator $D_{\mu\nu}^{\text{free}}(p-q)$
- How good is this?

FШF

Learn about the Force, Luke.

- What do we know?
- Effective running coupling $\mathcal{G}(Q^2)$

- What do we know?
- Effective running coupling $\mathcal{G}(Q^2)$
- Perturbative QCD determines UV regime
- IR unknown in detail

• What do we know?

- Effective running coupling $\mathcal{G}(Q^2)$
- Perturbative QCD determines UV regime
- IR unknown in detail
- IR enhancement necessary for dynamical breaking of chiral symmetry
- Integrated strength is essential
- Precise form at low $Q^2 \rightarrow \text{model}$

• What do we know?

- Effective running coupling $\mathcal{G}(Q^2)$
- Perturbative QCD determines UV regime
- IR unknown in detail
- IR enhancement necessary for dynamical breaking of chiral symmetry
- Integrated strength is essential
- Precise form at low $Q^2 \rightarrow \text{model}$
- IR: two-parameters via Gaussian: strength *D* and width ω
- perturbative α in the UV region

Model Details

• Effective coupling $\mathcal{G}(Q^2)$: $\omega D = \text{const.}$

Model Details

• Effective coupling $\mathcal{G}(Q^2)$: $\omega D = \text{const.}$

Masses

• $m_{0_{gr}^{-+}}$ and $m_{0_{exc1}^{-+}}$ as functions of current quark mass m_{π} [GeV] 1.5 M1. π_0 m_{π_j} 0.7 $m_{u/d'}$ m_{s} 0.3 0.4 0.2 $m_q \, [\text{GeV}]$

• $f_{0_{gr}^{-+}}$ and $f_{0_{exc1}^{-+}}$ as functions of current quark mass 0.14 0.12 0.1 0.08 f [GeV] 0.06 u/d 0.04 $0^{-+ gr}$ 0.02 $0^{-+} ex$ 0 -0.02 -0.04 0.02 0.18 0.08 0.12 0.2 0.04 0.06 0.14 0 0.10.16 m_q [GeV]

Inhomogeneous BSE

• 0⁻⁺ meson amplitude

M. Bhagwat, A. Höll, A. K., C. D. Roberts and S. V. Wright, arXiv:nucl-th/0701009

Inhomogeneous BSE

• 0^{-+} , 0^{++} , and 1^{--} meson amplitudes

Meson Masses

- I. C. Cloet, A. K., C. D. Roberts, arXiv:0710.5746 [nucl-th]
- Calculated masses for all mesons with J = 0, 1 for (equal) light and strange quark masses (MeV)

J^{PC}	u/d	exp	S	exp
0^{-+}	139	140	695	_
0*	860	—	1170	—
0^{++}	670	??	1080	??
0^{+-*}	1040	—	1385	
1	740	770	1065	1020
1^{-+*}	1000	1376?	1310	1600?
1^{++}	900	1260	1240	1426
1^{+-}	830	1235	1165	1386

* = exotic quantum numbers

More Meson Masses

 Calculated masses for all strange mesons with J = 0, 1(MeV)

J^P	gr	exp	exc	exp
0^{-}	497	497	1032	~ 1460
0^+	894	672	1239	1414
1-	935	892	1230	1414
1^{+}	1014	1272	1107	1403

WIP - Wish List

• Work in progress

- Hadronic decays, e.g. $\pi_{exc1} \rightarrow \varrho \pi_{gr}$
- Higher *J* (tensor mesons)
- Higher radial excitations
- Heavy-light mesons and radial excitations
- Nucleon properties (diquarks)

- Work in progress
 - Hadronic decays, e.g. $\pi_{exc1} \rightarrow \varrho \pi_{gr}$
 - Higher *J* (tensor mesons)
 - Higher radial excitations
 - Heavy-light mesons and radial excitations
 - Nucleon properties (diquarks)
- Wish list

- Sophisticated meson model beyond RLT
- Good description of axial-vector mesons
- Study states with "exotic" quantum numbers
- Include hadronic decay channels in BSE kernel

Conclusions

FШF

Don't underestimate the power of the Force.

- Dyson-Schwinger equations provide a nonperturbative continuum approach to QCD
- Bethe-Salpeter equation used to describe bound states in a manifestly covariant way
- Symmetry-preserving truncation scheme enables proof of exact results and reliable studies of hadron properties

- Dyson-Schwinger equations provide a nonperturbative continuum approach to QCD
- Bethe-Salpeter equation used to describe bound states in a manifestly covariant way
- Symmetry-preserving truncation scheme enables proof of exact results and reliable studies of hadron properties
- Step beyond Rainbow-Ladder truncation needed to go for axial vectors, scalars, exotics, radially excited states
- These provide means to study the long-range behavior of the strong interaction

