Aspects of Dyson-Schwinger approach to light-quark pseudoscalar mesons at zero and finite temperature^a

D. Klabučar^b on some results of collaboration with D. Horvatić^b, D. Blaschke^{c,d}, A. E. Radzhabov^c, A. Krassnigg^e

^a Talk at "Non-Perturbative Functional Methods in Quantum Field Theory" A Triangle Workshop in Theoretical Particle Physics, Jan. 23 - 25, 2008, Hévíz, Hungary

> ^bPhysics Department, University of Zagreb, Croatia ^cUniversity of Wroclaw, Poland, ^dJINR Dubna, Russia ^eUniversity of Graz, Austria

Introduction and motivation

- Recent RHIC results: hot QCD matter has very intricate properties ... & still no direct signal of deconfinement
- If hot QCD matter called "QGP", this cannot be the once expected perturbatively interacting quark-guon gas until much higher T
- Also, lattice (& other): J/Ψ and η_c stay bound till ~ $2T_{cri}$, maybe higher ... + similar indications about light-quark mesons = motivation to study *bound-state equations*
- RHIC's STAR collab.: 'A compelling, "smoking gun" signal for production of a new form of matter needed!'
- E.g., a change in symmetries obeyed by the strong interaction: the restoration of the chiral and $U_A(1)$ symmetry \longrightarrow a good understanding of the *light* pseudoscalar nonet is needed

Dyson-Schwinger approach to quark-hadron physics

- the bound state approach which is nopertubative, covariant and chirally well behaved (e.g., GMOR relation: $\lim_{\tilde{m}_q \to 0} M_{q\bar{q}}^2/2\tilde{m}_q = -\langle \bar{q}q \rangle / f_\pi^2$)
- a) direct contact with QCD through ab initio calculations
- b) phenomenological modeling of hadrons as quark bound states (e.g., here)
- coupled system of integral equations for Green functions of QCD
- ... but ... equation for n-point function calls (n+1)-point function ... \rightarrow cannot solve in full the growing tower of DS equations
- → various degrees of truncations, approximations and modeling is unavoidable (more so in phenomenological modeling of hadrons, as here)

Dyson-Schwinger approach to quark-hadron physics

• Gap equation for propagator S_q of dressed quark q

Homogeneous Bethe-Salpeter (BS) equation for a Meson $q\bar{q}$ bound state vertex $\Gamma_{q\bar{q}}$

Aspects of Dyson-Schwinger approach tolight-guark pseudoscalar mesons at zero and finite temperature a - p. 4/36

Gap and BS equations in ladder truncation

$$S_{q}(p)^{-1} = i\gamma \cdot p + \tilde{m}_{q} + \frac{4}{3} \int \frac{d^{4}\ell}{(2\pi)^{4}} g^{2} G_{\mu\nu}^{\text{eff}}(p-\ell)\gamma_{\mu} S_{q}(\ell)\gamma_{\nu}$$

$$\rightarrow S_q(p) = \frac{1}{i \not p A_q(p^2) + B_q(p^2)} = \frac{-i \not p A_q(p^2) + B_q(p^2)}{p^2 A_q(p^2)^2 + B_q(p^2)^2} = \frac{1}{A_q(p^2)} \frac{-i \not p + m_q(p^2)}{p^2 + m_q(p^2)^2}$$

$$\Gamma_{q\bar{q}'}(p,P) = -\frac{4}{3} \int \frac{d^4\ell}{(2\pi)^4} g^2 G^{\text{eff}}_{\mu\nu}(p-\ell) \gamma_{\mu} S_q(\ell + \frac{P}{2}) \Gamma_{q\bar{q}'}(\ell,P) S_q(\ell - \frac{P}{2}) \gamma_{\nu}$$

- Euclidean space: $\{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu}, \gamma_{\mu}^{\dagger} = \gamma_{\mu}, a \cdot b = \sum_{i=1}^{4} a_i b_i$
- P is the total momentum, $M^2 = -P^2$ meson mass²
- $G_{\mu\nu}^{\text{eff}}(k)$ an "effective gluon propagator" modeled !

From the gap and BS equations ...

solutions of the gap equation \rightarrow the <u>dressed</u> quark mass function

$$m_q(p^2) = \frac{B_q(p^2)}{A_q(p^2)}$$

propagator solutions $A_q(p^2)$ and $B_q(p^2)$ pertain to confined quarks if

$$m_q^2(p^2) \neq -p^2$$
 for real p^2

The BS solutions $\Gamma_{q\bar{q}'}$ enable the calculation of the properties of $q\bar{q}$ bound states, such as the decay constants of pseudoscalar mesons:

$$f_{PS} P_{\mu} = \langle 0 | \bar{q} \frac{\lambda^{PS}}{2} \gamma_{\mu} \gamma_{5} q | \Phi_{PS}(P) \rangle$$

$$\longrightarrow f_{\pi} P_{\mu} = N_{c} \operatorname{tr}_{s} \int \frac{d^{4} \ell}{(2\pi)^{4}} \gamma_{5} \gamma_{\mu} S(\ell + P/2) \Gamma_{\pi}(\ell; P) S(\ell - P/2)$$

Renormalization-group improved interactions

Landau gauge gluon propagator : $g^2 G^{\text{eff}}_{\mu\nu}(k) = G(-k^2)(-g_{\mu\nu} + \frac{k_{\mu}k_{\nu}}{k^2}),$

$$G(Q^2) \equiv 4\pi \frac{\alpha_s^{\text{eff}}(Q^2)}{Q^2} = G_{\text{UV}}(Q^2) + G_{\text{IR}}(Q^2), \qquad Q^2 \equiv -k^2$$

$$G_{\text{UV}}(Q^2) = 4\pi \frac{\alpha_s^{\text{pert}}(Q^2)}{Q^2} \approx \frac{4\pi^2 d}{Q^2 \ln(x_0 + \frac{Q^2}{\Lambda_{\text{QCD}}^2})} \left\{ 1 + b \frac{\ln[\ln(x_0 + \frac{Q^2}{\Lambda_{\text{QCD}}^2})]}{\ln(x_0 + \frac{Q^2}{\Lambda_{\text{QCD}}^2})} \right\},$$

but modeled non-perturbative part, e.g., Jain & Munczek:

 $G_{\mathsf{IR}}(Q^2) = G_{\mathsf{non-pert}}(Q^2) = 4\pi^2 a Q^2 \exp(-\mu Q^2)$ (similar : Maris, Roberts...)

• or, the dressed propagator with dim. 2 gluon condensate $\langle A^2 \rangle$ -induced dynamical gluon mass (Kekez & Klabučar):

$$G(Q^2) = 4\pi \frac{\alpha_s^{\text{pert}}(Q^2)}{Q^2} \left(\frac{Q^2}{Q^2 - M_{\text{gluon}}^2 + \frac{c_{\text{ghost}}}{Q^2}} \right)^2 \frac{Q^2}{Q^2 + M_{\text{gluon}}^2 + \frac{c_{\text{gluon}}}{Q^2}} \ . \ _$$

Some effective strong couplings $\alpha_s^{\text{eff}}(Q^2) \equiv Q^2 G(Q^2)/4\pi$

Blue = Munczek & Jain model. Red = K & K propagator with $\langle A^2 \rangle$ -induced dynamical gluon mass. Green = Alkofer. Magenta = Bloch. Turquoise dashed: Maris, Roberts & Tandy model. Important: integrated IR strength must be sufficient for DChSB!

Separable model = good, + easier at T > 0

Calculations simplify with the separable Ansatz for $G_{\mu\nu}^{\text{eff}}$:

$$G_{\mu\nu}^{\text{eff}}(p-q) \to \delta_{\mu\nu} G(p^2, q^2, p \cdot q)$$

$$G(p^2, q^2, p \cdot q) = D_0 f_0(p^2) f_0(q^2) + D_1 f_1(p^2) (p \cdot q) f_1(q^2)$$

• two strength parameters D_0, D_1 , and corresponding form factors $f_i(p^2)$. In the separable model, gap equation yields

$$B_f(p^2) = \tilde{m}_f + \frac{16}{3} \int \frac{d^4q}{(2\pi)^4} G(p^2, q^2, p \cdot q) \frac{B_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}$$
$$[A_f(p^2) - 1] p^2 = \frac{8}{3} \int \frac{d^4q}{(2\pi)^4} G(p^2, q^2, p \cdot q) \frac{(p \cdot q)A_f(q^2)}{q^2 A_f^2(q^2) + B_f^2(q^2)}.$$

• This gives $B_f(p^2) = \tilde{m}_f + b_f f_0(p^2)$ and $A_f(p^2) = 1 + a_f f_1(p^2)$, reducing to nonlinear equations for constants b_f and a_f .

A simple choice for 'interaction form factors' of the separable model:

•
$$f_0(p^2) = \exp(-p^2/\Lambda_0^2)$$

• $f_1(p^2) = [1 + \exp(-p_0^2/\Lambda_1^2)]/[1 + \exp((p^2 - p_0^2))/\Lambda_1^2]$ gives good description of pseudoscalar properties if the interaction is strong enough for realistic DChSB, when $m_{u,d}(p^2 \sim small) \sim$ the typical constituent quark mass scale $\sim m_\rho/2 \sim m_N/3$.

Nonperturbative dynamical propagator dressing

----> Dynamical Chiral Symmetry Breaking (DChSB)

DChSB = nonperturb. generation of large quark masses ...

• ... even in the chiral limit ($\tilde{m}_f \rightarrow 0$), where the octet pseudoscalar mesons are Goldstone bosons of DChSB!

At T = 0, good DS results; e.g., "non-anomalous":

- Separable model parameter values reproducing experimental data:
- $\tilde{m}_{u,d} = 5.5 \text{ MeV}, \Lambda_0 = 758 \text{ MeV}, \Lambda_1 = 961 \text{ MeV}, p_0 = 600 \text{ MeV}, D_0 \Lambda_0^2 = 219, D_1 \Lambda_1^4 = 40$ (fixed by fitting $M_{\pi}, f_{\pi}, M_{\rho}, g_{\rho\pi^+\pi^-}, g_{\rho e^+e^-}$ \rightarrow pertinent predictions $a_{u,d} = 0.672, b_{u,d} = 660 \text{ MeV}, \text{ i.e., } m_{u,d}(p^2), \langle \bar{u}u \rangle$)
- $\widetilde{m}_s = 115 \text{ MeV}$ (fixed by fitting $M_K \rightarrow \text{predictions } a_s = 0.657, b_s = 998$ MeV, i.e., $m_s(p^2)$, $\langle \overline{s}s \rangle$, $M_{s\overline{s}}$, f_K , $f_{s\overline{s}}$)
- Summary of results (all in GeV) for q = u, d, s and pseudoscalar mesons without the influence of gluon anomaly:

PS	M_{PS}	M_{PS}^{exp}	f_{PS}	f_{PS}^{exp}	$m_q(0)$	$-\langle q\bar{q}\rangle_0^{1/3}$
π	0.140	0.1396	0.092	0.0924 ± 0.0003	0.398	0.217
K	0.495	0.4937	0.110	0.1130 ± 0.0010		
$S\overline{S}$	0.685		0.119		0.672	

Extension to $T \neq 0$

- At $T \neq 0$, the quark 4-momentum $p \longrightarrow p_n = (\omega_n, \vec{p})$, where $\omega_n = (2n+1)\pi T$ are the discrete ($n = 0, \pm 1, \pm 2, \pm 3, \dots$) Matsubara frequencies, so that $p_n^2 = \omega_n^2 + \vec{p}^2$.
- Gap equation solution for the dressed quark propagator

$$S_f(p_n, T) = [i\vec{\gamma} \cdot \vec{p} A_f(p_n^2, T) + i\gamma_4\omega_n C_f(p_n^2, T) + B_f(p_n^2, T)]^{-1}$$

$$= \frac{-i\vec{\gamma} \cdot \vec{p} A_f(p_n^2, T) - i\gamma_4 \omega_n C_f(p_n^2, T) + B_f(p_n^2, T)}{\vec{p}^2 A_f^2(p_n^2, T) + \omega_n^2 C_f^2(p_n^2, T) + B_f^2(p_n^2, T)}$$

• There are now three amplitudes due to the loss of O(4) symmetry, and at sufficiently high $T \ge T_d$ denominator CAN vanish. \longrightarrow For $T \ge T_d$ quarks can be deconfined!

At T > 0, good and less good DS results

E.g., chiral symmetry restoration qualitatively good, but T_{Ch} lower than lattice (maybe up to 35%, and even more for 'more realistic' DS models unless they contain δ -function):

Same with pseudoscalar decay constants $f_P(T)$:

Both crossover and Ch-limit behavior OK, but $T_{\rm Ch}=128~{\rm MeV}$... cured by Polyakov loop (PL $\to T_{\rm Ch}=195~{\rm MeV}$)

Aspects of Dyson-Schwinger approach tolight-guark pseudoscalar mesons at zero and finite temperature a – p. 16/36

Similarly with the *T*-dependence of $\pi, K, s\bar{s}, \sigma$ masses:

'Deconfinement' $T_{d,q}$ from S_q pole - very different $T_{d,u}$, $T_{d,s}$... should also be cured/synchronized with $T_{Ch}(=T_{cri})$ by PL

- present approach yields mass² eigenvalues $M_{u\bar{d}}^2 = M_{\pi^+}^2, M_{u\bar{s}}^2 = M_K^2, ..., \hat{M}_{NA}^2 = \text{diag}(M_{u\bar{u}}^2, M_{d\bar{d}}^2, M_{s\bar{s}}^2)$
- $|u\bar{d}\rangle = |\pi^+\rangle, |u\bar{s}\rangle = |K^+\rangle, \dots$ but $|u\bar{u}\rangle, |d\bar{d}\rangle$ and $|s\bar{s}\rangle$ do not correspond to any physical particles (at T = 0 at least!), although in the isospin limit (adopted from now on) $M_{u\bar{u}} = M_{d\bar{d}} = M_{u\bar{d}} = M_{\pi}$. *I* is a good quantum number!

• \longrightarrow recouple into the familiar $I_3 = 0$ octet-singlet basis

$$|\pi^{0}\rangle = \frac{1}{\sqrt{2}}(|u\bar{u}\rangle - |d\bar{d}\rangle),$$

$$|\eta_{8}\rangle = \frac{1}{\sqrt{6}}(|u\bar{u}\rangle + |d\bar{d}\rangle - 2|s\bar{s}\rangle),$$

$$|\eta_{0}\rangle = \frac{1}{\sqrt{3}}(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle).$$

• the "non-anomalous" (chiral-limit-vanishing!) part of the mass-squared matrix of π^0 and η 's is (in π^0 - η_8 - η_0 basis)

$$\hat{M}_{NA}^2 = \begin{pmatrix} M_{\pi}^2 & 0 & 0 \\ 0 & M_{88}^2 & M_{80}^2 \\ 0 & M_{08}^2 & M_{00}^2 \end{pmatrix}$$

$$M_{88}^2 \equiv \langle \eta_8 | \hat{M}_{NA}^2 | \eta_8 \rangle \equiv M_{\eta_8}^2 = \frac{2}{3} (M_{s\bar{s}}^2 + \frac{1}{2} M_{\pi}^2),$$

$$M_{80}^2 \equiv \langle \eta_8 | \hat{M}_{NA}^2 | \eta_0 \rangle = M_{08}^2 = \frac{\sqrt{2}}{3} (M_\pi^2 - M_{s\bar{s}}^2)$$

$$M_{00}^2 \equiv \langle \eta_0 | \hat{M}_{NA}^2 | \eta_0 \rangle = \frac{2}{3} (\frac{1}{2} M_{s\bar{s}}^2 + M_{\pi}^2),$$

in order to avoid the U_A(1) problem, U_A(1) symmetry must ultimately be broken by gluon anomaly at least at the level of the masses

- All masses in \hat{M}_{NA}^2 are calculated in the ladder approx., which cannot include the gluon anomaly!
- Large N_c : the gluon anomaly suppressed as $1/N_c! \rightarrow$ Include its effect just at the level of masses: break the $U_A(1)$ symmetry and avoid the $U_A(1)$ problem by shifting the η_0 (squared) mass by anomalous contribution 3β .
- complete mass matrix is then $\hat{M}^2 = \hat{M}_{NA}^2 + \hat{M}_A^2$ where

 3β , the anomalous mass of η_0 , is related to the topological susceptibility of the vacuum. It is fixed by phenomenology or taken from the lattice calculations.

 \blacksquare we can also rewrite \hat{M}_A^2 in the $q\bar{q}$ basis $|u\bar{u}\rangle$, $|d\bar{d}\rangle$, $|s\bar{s}\rangle$

$$\hat{M}_{A}^{2} = \beta \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \xrightarrow{\text{flavor}} \hat{M}_{A}^{2} = \beta \begin{pmatrix} 1 & 1 & X \\ 1 & 1 & X \\ X & X & X^{2} \end{pmatrix}$$
breaking

- We introduced the effects of the flavor breaking on the anomaly-induced transitions $|q\bar{q}\rangle \rightarrow |q'\bar{q}'\rangle$ (q,q'=u,d,s). $s\bar{s}$ transition suppression estimated by $X \approx f_{\pi}/f_{s\bar{s}}$.
- **•** Then, \hat{M}_A^2 in the octet-singlet basis is modified to

$$\hat{M}_A^2 = \beta \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{2}{3}(1-X)^2 & \frac{\sqrt{2}}{3}(2-X-X^2) \\ 0 & \frac{\sqrt{2}}{3}(2-X-X^2) & \frac{1}{3}(2+X)^2 \end{pmatrix}$$

● → In the isospin limit, one can always restrict to 2×2 submatrix of etas

nonstrange (NS) – strange (S) basis

$$\begin{aligned} \eta_{NS} \rangle &= \frac{1}{\sqrt{2}} (|u\bar{u}\rangle + |d\bar{d}\rangle) = \frac{1}{\sqrt{3}} |\eta_8\rangle + \sqrt{\frac{2}{3}} |\eta_0\rangle ,\\ |\eta_S\rangle &= |s\bar{s}\rangle = -\sqrt{\frac{2}{3}} |\eta_8\rangle + \frac{1}{\sqrt{3}} |\eta_0\rangle . \end{aligned}$$

• the η - η' matrix in this basis is

$$\hat{M}^2 = \begin{pmatrix} M_{\eta_{NS}}^2 & M_{\eta_S\eta_{NS}}^2 \\ M_{\eta_{NS}\eta_S}^2 & M_{\eta_S}^2 \end{pmatrix} = \begin{pmatrix} M_{u\bar{u}}^2 + 2\beta & \sqrt{2}\beta X \\ \sqrt{2}\beta X & M_{s\bar{s}}^2 + \beta X^2 \end{pmatrix} \xrightarrow{\phi} \begin{pmatrix} m_{\eta}^2 & 0 \\ 0 & m_{\eta'}^2 \end{pmatrix}$$

NS–S mixing relations

$$|\eta\rangle = \cos\phi|\eta_{NS}\rangle - \sin\phi|\eta_S\rangle$$
, $|\eta'\rangle = \sin\phi|\eta_{NS}\rangle + \cos\phi|\eta_S\rangle$.

$$\theta = \phi - \arctan \sqrt{2}$$

• Let lowercase m_M 's denote the empirical mass of meson M. From our calculated, model mass matrix in NS–S basis, we form its empirical counterpart \hat{m}_{exp}^2 by

● i) obvious substitutions $M_{u\bar{u}} \equiv M_{\pi} \rightarrow m_{\pi}$, $M_{s\bar{s}} \rightarrow m_{s\bar{s}}$

■ *ii*) by noting that $m_{s\bar{s}}$, the "empirical" mass of the unphysical $s\bar{s}$ pseudoscalar bound state, is given in terms of masses of physical particles as $m_{s\bar{s}}^2 \approx 2m_K^2 - m_\pi^2$ due to GMOR. Then,

$$\hat{m}_{\exp}^2 = \begin{bmatrix} m_{\pi}^2 + 2\beta & \sqrt{2}\beta X \\ \sqrt{2}\beta X & 2m_K^2 - m_{\pi}^2 + \beta X^2 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} m_{\eta}^2 & 0 \\ 0 & m_{\eta'}^2 \end{bmatrix}$$

Finally, fix anomalous contribution to η **-** η **':**

requiring that the experimental trace $(m_{\eta}^2 + m_{\eta'}^2)_{exp} \approx 1.22 \text{ GeV}^2$ be reproduced by
the theoretical \hat{M}^2 , yields $\beta_{\text{fit}} = \frac{1}{2+X^2} [(m_{\eta}^2 + m_{\eta'}^2)_{exp} - (M_{u\bar{u}}^2 + M_{s\bar{s}}^2)]$

- But better get β from lattice χ ! Then no free parameters!
- \checkmark the trace of the empirical \hat{m}_{exp}^2 demands the 1^{st} equality in

$$\beta(2+X^2) = m_\eta^2 + m_{\eta'}^2 - 2m_K^2 = \frac{2N_f}{f_\pi^2} \chi_{\mathbf{YM}} \quad (2^{\text{nd}}\text{equality} = \text{WV relation})$$

• then, the NS - S mixing angle ϕ

$$\tan 2\phi = \frac{2M_{\eta_S\eta_{NS}}^2}{M_{\eta_S}^2 - M_{\eta_{NS}}^2} = \frac{2\sqrt{2\beta}X}{M_{\eta_S}^2 - M_{\eta_{NS}}^2},$$

$$M_{\eta_{NS}}^2 = M_{u\bar{u}}^2 + 2\beta = M_{\pi}^2 + 2\beta, \quad M_{\eta_S}^2 = M_{s\bar{s}}^2 + \beta X^2 = M_{s\bar{s}}^2 + \beta \frac{f_{\pi}^2}{f_{s\bar{s}}^2}$$

• The diagonalization of the NS - S mass matrix then finally gives us the *calculated* η and η' masses:

$$M_{\eta}^{2} = \cos^{2} \phi M_{\eta_{NS}}^{2} - \sqrt{2}\beta X \sin 2\phi + \sin^{2} \phi M_{\eta_{S}}^{2}$$
$$M_{\eta'}^{2} = \sin^{2} \phi M_{\eta_{NS}}^{2} + \sqrt{2}\beta X \sin 2\phi + \cos^{2} \phi M_{\eta_{S}}^{2}$$

Equivalently, from the secular determinant,

$$\begin{split} M_{\eta}^{2} &= \frac{1}{2} \left[M_{\eta_{NS}}^{2} + M_{\eta_{S}}^{2} - \sqrt{(M_{\eta_{NS}}^{2} - M_{\eta_{S}}^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ &= \frac{1}{2} \left[M_{\pi}^{2} + M_{s\bar{s}}^{2} + \beta(2 + X^{2}) - \sqrt{(M_{\pi}^{2} + 2\beta - M_{s\bar{s}}^{2} - \beta X^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ M_{\eta'}^{2} &= \frac{1}{2} \left[M_{\eta_{NS}}^{2} + M_{\eta_{S}}^{2} + \sqrt{(M_{\eta_{NS}}^{2} - M_{\eta_{S}}^{2})^{2} + 8\beta^{2}X^{2}} \right] \\ &= \frac{1}{2} \left[M_{\pi}^{2} + M_{s\bar{s}}^{2} + \beta(2 + X^{2}) + \sqrt{(M_{\pi}^{2} + 2\beta - M_{s\bar{s}}^{2} - \beta X^{2})^{2} + 8\beta^{2}X^{2}} \right] \end{split}$$

Separable model results on η and η' mesons (at T = 0)

	$eta_{ ext{fit}}$	$\beta_{\text{latt.}}$	Exp.
θ	-12.22°	-13.92°	
M_{η}	548.9	543.1	547.75
$M_{\eta'}$	958.5	932.5	957.78
X	0.772	0.772	
3eta	0.845	0.781	

- masses are in units of MeV, 3β in units of GeV² and the mixing angles are dimensionless.
- $\beta_{\text{latt.}}$ was obtained from $\chi_{\text{YM}}(T=0) = (175.7 \text{ MeV})^4$
- $X = f_{\pi}/f_{s\bar{s}}$ as well as the whole \hat{M}_{NA}^2 (consisting of M_{π} and $M_{s\bar{s}}$) are calculated model quantities.

χ , topological susceptibility of QCD vacuum, at T > 0

$$\chi = \int d^4x \, \langle q(x)q(0) \rangle \,, \qquad q(x) = \frac{g^2}{64\pi^2} \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x)$$

• q(x) = topological charge density operator

Relative temperature (T/T_{χ}) dependence of meson masses

 $\chi = \chi_{YM} \rightarrow Pisarski-Wilczek scenario only for very unrealistically low <math>T_{\chi}/T_{Ch}$ ratio

M_P[GeV]

Relative temperature (T/T_{χ}) dependence of meson masses

 $\chi = \chi_{YM}$ implies η' mass increase \rightarrow suppression of the η' multiplicity already for still unrealistically low topological susceptibility-melting temperature $T_{\chi} \gtrsim 0.8 T_{\rm Ch}$

calar mesons at zero and finite temperature a – p. 29/36 Aspects of Dyson-Schwinger approach tolight-guark pse

Relative temperature (T/T_{χ}) dependence of meson masses

 $-\chi = \chi_{YM}$ implies a huge η' mass increase, to 5 GeV for $T_{\chi} = T_{Ch}$, and even more for $T_{\chi} > T_{Ch} \rightarrow$ total suppression of the η' multiplicity = signature of Ch symm. restoration **OR** of the failure of WV relation

vskip -2mm

The T-dependence of the NS-S mixing angle ϕ for $\chi_{\rm YM}$

 $\phi(T)$ for $T_{\chi} = 2/3 T_{\rm Ch}$ (dash-dotted curve), $T_{\chi} = 0.758 T_{\rm Ch}$ (dashed curve), $T_{\chi} = 0.836 T_{\rm Ch}$ (dotted curve), and $T_{\chi} = T_{\rm Ch}$ (solid curve).

Shore's generalization of WV – valid to all orders in $1/N_c$

Inclusion of gluon anomaly in DGMOR relations \rightarrow

 $(f^{0\eta'})^2 m_{\eta'}^2 + (f^{0\eta})^2 m_{\eta}^2 = \frac{1}{3} \left(f_\pi^2 m_\pi^2 + 2 f_K^2 m_K^2 \right) + 6A \quad (1)$

$$f^{0\eta'}f^{8\eta'}m_{\eta'}^2 + f^{0\eta}f^{8\eta}m_{\eta}^2 = \frac{2\sqrt{2}}{3} \left(f_\pi^2 m_\pi^2 - f_K^2 m_K^2 \right)$$
(2)

$$(f^{8\eta'})^2 m_{\eta'}^2 + (f^{8\eta})^2 m_{\eta}^2 = -\frac{1}{3} \left(f_\pi^2 m_\pi^2 - 4 f_K^2 m_K^2 \right)$$
(3)

 $A = \chi_{\mathbf{YM}} + \mathcal{O}(\frac{1}{N_c}) = \text{full QCD topological charge.}$ (1)+(3)->

$$(f^{0\eta'})^2 m_{\eta'}^2 + (f^{0\eta})^2 m_{\eta}^2 + (f^{8\eta})^2 m_{\eta}^2 + (f^{8\eta'})^2 m_{\eta'}^2 - 2f_K^2 m_K^2 = 6A$$

• Then, large N_c limit and $f^{0\eta}, f^{8\eta'} \to 0$ as well as $f^{0\eta'}, f^{8\eta}, f_K \to f_{\pi}$ recovers the standard WV.

M_P for 4-flavor QCD topological susceptibility

 χ_{4fQCD} melts faster than χ_{YM} . Thus, $\chi = \chi_{4fQCD}$ enables η and η' multiplicity increase ('Pisarski-Wilczek scenario') at higher T_{χ}/T_{Ch}

M_P for 4-flavor QCD topological susceptibility

 $\chi = \chi_{4fQCD}$ at the preferred choice $T_{\chi} = T_{Ch}$ leads to the reasonable increases and then fall-offs of η and η' masses

M_P for 4-flavor QCD topological susceptibility

 $\chi = \chi_{4fQCD}$ for $T_{\chi} > T_{Ch}$ leads to η' mass increases, but noticeably more moderate than in the YM case.

Summary

- At T = 0, well- and long-known successful DS description of $I \neq 0$ pseudoscalars in many models ... but ALSO of the $\eta \eta'$ complex thanks to WV relation
- This includes the separable model, after successful extension to strange sector
- Separable model easier for T > 0 calculations, but illustrates some general features
- Generally, DS approach has good features also at T > 0, but synchronization of deconfinement and chiral restoration temperatures needed (D. Horvatić talk on PL)
- Main point the T > 0 extension of the DS treatment of $\eta \eta'$ [PRD 76, 096009 (2007)].
- Results on $\eta \eta'$ complex at $T \neq 0$ DIFFER VERY MUCH for various possible topological susceptibilities χ
- They also differ much for various possible relationships between the chiral restoration and χ -melting temperatures \rightarrow stresses the importance of synchronization of various characteristic temperatures
- Possible signal, especially from η' , in hot QCD matter: η' suppression \rightarrow chiral restoration, otherwise indication of breakdown of strict WV relation (with χ_{YM})