Baryon-photon interaction in a covariant Faddeev approach

Diana Nicmorus

In collaboration with R. Alkofer, G. Eichmann, A. Krassnigg, M. Schwinzerl

Institut für Physik Fachbereich Theoretische Physik

Universität Graz

January 2008

Héviz, Hungary

Workshop

Outline

Motivation:
baryonic structure \rightarrow experimental advances.

Back to fundaments: Poincare invariant Faddeev equations.

Ingredients: Quark propagator, gluon propagator, quark-gluon vertex ... DSEs.

Diquarks... BSEs.

Nucleon quark-core: solve a quark-diquark system.

- **S** Calculated by now: M_N , nucleon FF, elmag. radii...
- **Summary and Outlook (** M_{Δ} , $N \to \Delta \gamma$, $\Sigma \to \Lambda \gamma$, π corrections).

Experimental advances

- Baryons are composite objects.
- Electromagnetic interaction: present precise tests of the structure.
- Nucleon electromagnetic form factors, polarizabilities, strangeness content (e^-p scattering).
- Electro- and photoproduction: the proton and its lightest resonance $\Delta(1232)$.

JLab-CEBAF, MIT-BATES, Mainz-MAMI, Brookhaven-LEGS.

Theoretical efforts

 $EMR(\%) = \frac{E2}{M1} = -2.5 \pm 0.5$ (MAMI)

$$CMR(\%) = \frac{C2}{M1} = -4.81 \pm 0.27$$
 (LEGS)

Models

Constituent quark models, pion cloud models....

Covariance, link to effective theories.

Do we understand the nucleon?

- Models offer a good description of data in low-energy regime.
- Baryon-quark vertex not trivial.
- Desired QCD-based solution.
- Confinement, DCSB, relativistic bound states ...

Faddeev Equations

- Baryons as composite objects of confined quarks and nonpointlike diquarks.
- Bound state poles in the 6-point Green-functions → homogenous integral equations for the baryon amplitudes.
- Solve iteratively if ingredients are known: quark propagator, three-quark interaction kernel.

Faddeev approximation: retain only 2-particle interaction kernels (dominant structure in nucleon).

$$K = \sum_{i=1}^{3} K_i \otimes S_i^{-1}$$

Faddeev equations

- Solution Exploit the same attractive interaction for $1_c^{q\bar{q}}$ and $\bar{3}_c^{qq}$.
- Construct nucleon: $\bar{3}_c^{qq} \times 3_c^q \rightarrow \text{color-singlet.}$
- Binding in the nucleon: quark exchange between the dormant quark and diquark.
- Solve numerically a quark-diquark BSE.

Ingredients: quark propagator, 2-particle interaction kernel.

Diquarks

• q-q correlations dominant structure in the nucleon (supported by lattice).

Approximation: two-quark separable correlations.

$$T = \sum_{x \to 0} \overline{x}$$

Scalar and axial-vector correlations.

$$T_{qq}(p_1, p_2, P) \sim \chi(p_1)D(P)\bar{\chi}(p_2) + \chi^{\mu}(p_1)D^{\mu\nu}(P)\bar{\chi}^{\nu}(p_2)$$

Diquark homogenous Bethe-Salpeter equation.

$$\chi = = K \xrightarrow{\circ} \chi =$$

Determines diquark amplitude on the mass-shell: $\chi = K G_0 \chi$

Diquark ingredients

Solve using rainbow-ladder truncation: one gluon exchange + vector-like quark-gluon vertex.

Diquark propagator in ladder approximation.

$$D^{-1} = \bar{\chi} \left(K^{-1} - G_0 \right) \chi$$

Diquark propagator: calculated on-shell behavior,

parametrized off-shell behavior.

Quark ingredients

Infinite coupled system of DSEs.

Quark propagator:

Gluon propagator:

Ghost propagator:

Ghost-gluon vertex:

Quark propagator

Dressed quark propagator: solution of the DSE.

- General form: $S(p) = i \not p \sigma_v(p^2) \sigma_s(p^2) = -\frac{1}{iA(p^2) + B(p^2)}$
- Gluon dressing reflected in the quark mass function $M(p^2) = \frac{B(p^2)}{A(p^2)}$
- Solution Asymptotic freedom: $M(p^2) \rightarrow m_q$ perturbative quark propagator.

Rainbow-ladder truncation

Solve quark DSE using rainbow truncation:

Quark gluon vertex ansatz $i\Gamma_{\mu} = i\gamma_{\mu} \times \Gamma(k^2)$

Note: consistent BSE q-q kernel.

Advantage: simple truncation, quark DSE and q-q BSE kernel fulfil AV-WTI.

Gluon propagator, running α

Dressed gluon propagator.

$$D_{\mu\nu}(k) = D(k^2) D_{\mu\nu}^{free}(k^2)$$

Dressings $D(k^2)$ and $\Gamma(k^2)$ absorbed in the running coupling:

 $\alpha_{eff}(k^2) \sim D(k^2) \; \Gamma(k^2)$

constraint by the correct UV behaviour $\rightarrow \frac{\pi \gamma_m}{ln \frac{k^2}{\Lambda_{QCD}^2}}$ and strong enough in IR to generate D χ SB.

Dressed quark propagator

 $S^{-1}(p,\mu^2) \sim Z_2(\mu^2,\Lambda^2) S_0^{-1}(p,\Lambda^2) - Z_2(\mu^2,\Lambda^2) \int_q^{\Lambda} d^4q \; \alpha_{eff}(k^2) D_{\mu\nu}^{free} \gamma_{\mu} S(q,\mu^2) i \gamma_{\nu}$

P. Maris, P.C. Tandy Phys. Rev. C 60, 055214 (1999).

M(p) in rainbow-ladder

Quark mass function fixed by lattice calculations

P.O. Bowman et al. Phys. Rev. D 66, 014505 (2002).

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

Nucleon BSE

 $\Phi(p,P)^{a} = \sum_{b,c} \int \frac{d^{4}k}{(2\pi)^{2}} \chi^{b}(k_{r},k_{d}) S^{T}(q) \bar{\chi}^{aT}(p_{r},p_{d}) S(k_{q}) D^{bc}(k_{d}) \Phi(k,P)$

Decomposition of Faddeev amplitudes in Dirac space
 - in explicit calculations use full diquark amplitudes.

Nucleon mass

• $M_N = 0.93$ GeV at physical point $m_\pi = 138 MeV$ $M_N^{exp} = 0.94$ GeV.

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

Lattice data; chiral extrapolation methods.

Electromagnetic interaction

- Ward-Takahashi identity: more than impulse approx. is needed.
- Electromagnetic transition from Ax. to S diquark satisfies gauge invariance alone.

General current:

 $< J^{\mu} > = \int \bar{\Phi} \{ D S \Gamma^{\mu}_{q} S + D \Gamma^{\mu}_{diq} D S + D S K^{\mu} S D \} \Phi$

Exp. data by P. Grabmayr, 2005.

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

 $q - \gamma$ coupling is dominant

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

Electromagnetic radii of nucleon

	r_E^p	r_E^n	r^p_M	r_M^n	[fm]
exp	0.87	0.34	0.86	0.88	
calc.	0.67	0.13	0.58	0.57	

Magnetic moments of nucleon.

	μ_p	μ_n	[n.m]
exp	2.79	-1.91	
calc.	2.52	-1.55	

Summary

- Main message: develop QCD based understanding of the nucleon structure.
- Poincare covariant DSE-BSE approach to baryons.
- Relativistic bound states, dynamical chiral symmetry breaking...
- Quark-diquark picture describes well nucleon quark-core.
- Rainbow-ladder truncation: consistent resolvation of DSE and BSE. Calculation of nucleon static properties and FF.
- No baryon observables as input.

Outlook

- Study Δ (1232): spin $-\frac{3}{2}$ particle, fully flavour symmetric \rightarrow axial-vector diquarks only!
- ▶ By now, using specific ansätze for the quark propagator and the diquark correlations: M_∆ = 1.004 ÷ 1.007 GeV
 M. Oettel, R. Alkofer, L. von Smekal, Eur. Phys. J. A8: 553-566 (2000)
- Extension to $N \Delta \gamma$:
 - highly non-trivial!
 - long disputed electromagnetic ratios $\frac{E2}{M1}$, $\frac{C2}{M1}$ positive and few %
 - compare to the diagonal $\Sigma \to \Lambda \gamma$: importance of axial-vector correlations.
- Consistently include π -clouds
 - expected to dominate low-energy obserbavles.

- $m_{sc} \simeq 0.67 \text{ GeV}$
- $m_{av} \simeq 0.88 \text{ GeV}$
- Chiral limit: $m_{av} m_{sc} \simeq 0.21 \text{ GeV}$
- Compared to the lattice values
 0.14 GeV C. Alexandrou *et al.* Phys. Rev. Lett. 97, 222002 (2006)
 0.29 GeV R. Babich *et al.* hep-lat/0701023

Few... technicalities

- Decompose nucleon Faddeev amplitudes in Dirac space.
- Reduce the 4-dimensional eqs. to a coupled system of 1-dimensional eqs. via Chebyshev expansions of:
 - Dirac coefficients
 - propagator matrix: $S_q D_{diq}$
 - quark-exchange kernel.
- Solve quark-diquark BSE: obtain nucleon mass and quark-diquark amplitudes on the nucleon mass-shell.

Isovector charge radii

G. Eichman, A. Krassnigg, M. Schwinzerl, R.Alkofer, arxiv:0712.2666

Lattice points Phys. Rev. D 71, 034508 (2005).

EMR and CMR

filled triangle - A1 Collab. filled box - LEGS Collab. opened circle - MAMI opened triangle - OOPS Collab.

filled triangle - A1 Collab. opened triangle - OOPS Collab. filled box - MAMI filled circle - MAMI

