Phenomenological applications of the 2PI Hartree approximation

Gergely Fejős
January 25, 2008
Hévíz

Outline

- Renormalisation of the gap equations and the equation of state in general models
- The method of constructing the counter-terms for invariant tensor structures
- Example 1: $\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, focusing on $\mathrm{N}=3$ and $\mathrm{N} \rightarrow \infty$
- Example 2: $\mathrm{U}(3) \times \mathrm{U}(3)$ meson model
- Solving the renormalised equations using phenomenological input
- Mass spectra at zero temperature

Renormalisation

- Consider a general Lagrangian:

$$
\begin{aligned}
& L=\frac{1}{2}\left[\partial_{\mu} \sigma_{a} \partial^{\mu} \sigma_{a}+\partial_{\mu} \pi_{a} \partial^{\mu} \pi_{a}-\mu_{S}^{2} \sigma_{a} \sigma_{a}-\mu_{P}^{2} \pi_{a} \pi_{a}\right]- \\
& \frac{1}{3} F_{a b c d}^{S} \sigma_{a} \sigma_{b} \sigma_{c} \sigma_{d}-\frac{1}{3} F_{a b c d}^{P} \pi_{a} \pi_{b} \pi_{c} \pi_{d}-2 H_{a b, c d} \pi_{a} \pi_{b} \sigma_{c} \sigma_{d}
\end{aligned}
$$

- It fits the $\mathrm{O}(\mathrm{N})$, and also the $\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ model with $\mathrm{M}=T_{a}\left(\sigma_{a}+i \pi_{a}\right)$

Renormalisation

- Consider a general Lagrangian:

$$
\begin{aligned}
& L=\frac{1}{2}\left[\partial_{\mu} \sigma_{a} \partial^{\mu} \sigma_{a}+\partial_{\mu} \pi_{a} \partial^{\mu} \pi_{a}-\mu_{S}^{2} \sigma_{a} \sigma_{a}-\mu_{P}^{2} \pi_{a} \pi_{a}\right]- \\
& \frac{1}{3} F_{a b c d}^{S} \sigma_{a} \sigma_{b} \sigma_{c} \sigma_{d}-\frac{1}{3} F_{a b c d}^{P} \pi_{a} \pi_{b} \pi_{c} \pi_{d}-2 H_{a b, c d} \pi_{a} \pi_{b} \sigma_{c} \sigma_{d}
\end{aligned}
$$

- It fits the $\mathrm{O}(\mathrm{N})$, and also the $\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ model with $\mathrm{M}=T_{a}\left(\sigma_{a}+i \pi_{a}\right)$
- It is assumed, that only the sigma field has non-zero expectation value
- The 2PI effective potential is the following:

$$
\begin{aligned}
& V=\frac{1}{2} \mu_{a b, S}^{2} \bar{\sigma}_{a} \bar{\sigma}_{b}+\frac{1}{3} F_{a b c d}^{S} \bar{\sigma}_{a} \bar{\sigma}_{b} \bar{\sigma}_{c} \bar{\sigma}_{d}-\frac{i}{2} \int_{k}\left[D_{a b}^{-1 S} G_{b a}^{S}+\right. \\
& \left.D_{a b}^{-1 P} G_{b a}^{P}\right]--\frac{i}{2} \int_{k}\left[\ln G_{a a}^{-1 S}+\ln G_{a a}^{-1 P}\right]+V_{2}+V^{c t}
\end{aligned}
$$

Renormalisation

- Consider a general Lagrangian:

$$
\begin{aligned}
& L=\frac{1}{2}\left[\partial_{\mu} \sigma_{a} \partial^{\mu} \sigma_{a}+\partial_{\mu} \pi_{a} \partial^{\mu} \pi_{a}-\mu_{S}^{2} \sigma_{a} \sigma_{a}-\mu_{P}^{2} \pi_{a} \pi_{a}\right]- \\
& \frac{1}{3} F_{a b c d}^{S} \sigma_{a} \sigma_{b} \sigma_{c} \sigma_{d}-\frac{1}{3} F_{a b c d}^{P} \pi_{a} \pi_{b} \pi_{c} \pi_{d}-2 H_{a b, c d} \pi_{a} \pi_{b} \sigma_{c} \sigma_{d}
\end{aligned}
$$

- It fits the $\mathrm{O}(\mathrm{N})$, and also the $\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ model with $\mathrm{M}=T_{a}\left(\sigma_{a}+i \pi_{a}\right)$
- It is assumed, that only the sigma field has non-zero expectation value
- The 2PI effective potential is the following:

$$
\begin{aligned}
& V=\frac{1}{2} \mu_{a b, S}^{2} \bar{\sigma}_{a} \bar{\sigma}_{b}+\frac{1}{3} F_{a b c d}^{S} \bar{\sigma}_{a} \bar{\sigma}_{b} \bar{\sigma}_{c} \bar{\sigma}_{d}-\frac{i}{2} \int_{k}\left[D_{a b}^{-1 S} G_{b a}^{S}+\right. \\
& \left.D_{a b}^{-1 P} G_{b a}^{P}\right]--\frac{i}{2} \int_{k}\left[\ln G_{a a}^{-1 S}+\ln G_{a a}^{-1 P}\right]+V_{2}+V^{c t}
\end{aligned}
$$

- In Hartree approximation V_{2} contains the double bubble diagrams in the theory
- $V^{c t}$ contains the counter-terms

Renormalisation

- Counter-term structure: $V^{c t}=V_{4}^{c t}+V_{2}^{\text {ct }}+V_{0}^{\text {ct }}$
- $V_{4}^{c t}=\frac{1}{2} \delta \tilde{\mu}_{a b, S}^{2} \bar{\sigma}_{a} \bar{\sigma}_{b}+\frac{1}{3} \delta \tilde{F}_{a b c d} \bar{\sigma}_{a} \bar{\sigma}_{b} \bar{\sigma}_{c} \bar{\sigma}_{d}$
- $V_{2}^{c t}=\frac{1}{2} \delta \hat{\mu}_{a b, S}^{2} \int_{k} G_{b a}^{S}(k)+\frac{1}{2} \delta \hat{\mu}_{a b, P}^{2} \int_{k} G_{b a}^{P}(k)+$ $4 \delta \hat{F}_{a b c d} \int_{k} G_{a b}^{S}(k) \bar{\sigma}_{c} \bar{\sigma}_{d}+4 \delta \hat{H}_{a b c d} \int_{k} G_{a b}^{P}(k) \bar{\sigma}_{c} \bar{\sigma}_{d}$
- $V_{0}^{c t}=\delta F_{a b c d}^{S} \int_{k} G_{a b}^{S}(k) \int_{p} G_{c d}^{S}(p)+$ $\delta F_{a b c d}^{P} \int_{k} G_{a b}^{P}(k) \int_{p} G_{c d}^{P}(p)+2 \delta H_{a b c d} \int_{k} G_{a b}^{S}(k) \int_{p} G_{c d}^{P}(p)$
- 9 different counter tensors

Renormalisation

- Counter-term structure: $V^{c t}=V_{4}^{c t}+V_{2}^{c t}+V_{0}^{\text {ct }}$
- $V_{4}^{c t}=\frac{1}{2} \delta \tilde{\mu}_{a b, S}^{2} \bar{\sigma}_{a} \bar{\sigma}_{b}+\frac{1}{3} \delta \tilde{F}_{a b c d} \bar{\sigma}_{a} \bar{\sigma}_{b} \bar{\sigma}_{c} \bar{\sigma}_{d}$
- $V_{2}^{c t}=\frac{1}{2} \delta \hat{\mu}_{a b, S}^{2} \int_{k} G_{b a}^{S}(k)+\frac{1}{2} \delta \hat{\mu}_{a b, P}^{2} \int_{k} G_{b a}^{P}(k)+$ $4 \delta \hat{F}_{a b c d} \int_{k} G_{a b}^{S}(k) \bar{\sigma}_{c} \bar{\sigma}_{d}+4 \delta \hat{H}_{a b c d} \int_{k} G_{a b}^{P}(k) \bar{\sigma}_{c} \bar{\sigma}_{d}$
- $V_{0}^{c t}=\delta F_{a b c d}^{S} \int_{k} G_{a b}^{S}(k) \int_{p} G_{c d}^{S}(p)+$ $\delta F_{a b c d}^{P} \int_{k} G_{a b}^{P}(k) \int_{p} G_{c d}^{P}(p)+2 \delta H_{a b c d} \int_{k} G_{a b}^{S}(k) \int_{p} G_{c d}^{P}(p)$
- 9 different counter tensors
- The stationary conditions: $\frac{\delta V}{\delta G_{a b}^{P, S}}=0, \frac{\delta V}{\delta \bar{\sigma}_{a}}=0$ give the gap equations and the equation of state
- One has to separate the finite parts from the divergences, in the tadpole integrals M_{0} renormalisation scale has to be introduced

Renormalisation

- With the notation $M_{c d}^{S, P}=O_{c e}^{S, P} O_{d e}^{S, P} \tilde{M}_{e}^{2}, \quad \int_{k} G_{c d}^{S, P}=O_{c e}^{S, P} O_{d e}^{S, P} T\left(\tilde{M}_{S ; P, e}^{2}\right)$, the finite parts are:
- P gap: $M_{a b, P}^{2}=$
$\mu_{a b, P}^{2}+4 H_{a b c d} O_{c e}^{S} O_{d e}^{S} T_{F}\left(\tilde{M}_{S, e}^{2}\right)+4 F_{a b c d}^{P} O_{c e}^{P} O_{d e}^{P} T_{F}\left(\tilde{M}_{P, e}^{2}\right)$
- S gap: $M_{a b, S}^{2}=\mu_{a b, S}^{2}+4 F_{a b c d}^{S} \bar{\sigma}_{c} \bar{\sigma}_{d}+$ $4 F_{a b c d}^{S} O_{c e}^{S} O_{d e}^{S} T_{F}\left(\tilde{M}_{S, e}^{2}\right)+4 H_{a b c d} O_{c e}^{P} O_{d e}^{P} T_{F}\left(\tilde{M}_{P, e}^{2}\right)$
- Eq. of state: $M_{a b, S}^{2} \bar{\sigma}_{b}=\frac{8}{3} F_{a b c d}^{S} \bar{\sigma}_{b} \bar{\sigma}_{c} \bar{\sigma}_{d}$

Renormalisation

- With the notation $M_{c d}^{S, P}=O_{c e}^{S, P} O_{d e}^{S, P} \tilde{M}_{e}^{2}, \quad \int_{k} G_{c d}^{S, P}=O_{c e}^{S, P} O_{d e}^{S, P} T\left(\tilde{M}_{S ; P, e}^{2}\right)$, the finite parts are:
- P gap: $M_{a b, P}^{2}=$ $\mu_{a b, P}^{2}+4 H_{a b c d} O_{c e}^{S} O_{d e}^{S} T_{F}\left(\tilde{M}_{S, e}^{2}\right)+4 F_{a b c d}^{P} O_{c e}^{P} O_{d e}^{P} T_{F}\left(\tilde{M}_{P, e}^{2}\right)$
- S gap: $M_{a b, S}^{2}=\mu_{a b, S}^{2}+4 F_{a b c d}^{S} \bar{\sigma}_{c} \bar{\sigma}_{d}+$ $4 F_{a b c d}^{S} O_{c e}^{S} O_{d e}^{S} T_{F}\left(\tilde{M}_{S, e}^{2}\right)+4 H_{a b c d} O_{c e}^{P} O_{d e}^{P} T_{F}\left(\tilde{M}_{P, e}^{2}\right)$
- Eq. of state: $M_{a b, S}^{2} \bar{\sigma}_{b}=\frac{8}{3} F_{a b c d}^{S} \bar{\sigma}_{b} \bar{\sigma}_{c} \bar{\sigma}_{d}$
- Types of divergences: $\bar{\sigma}$ independent, $\bar{\sigma}$ dependent overall divergences, T_{F} dependent subdivergences \rightarrow it must be ensured that all types of these expressions vanish

Renormalisation

- $\delta F_{a b c d}^{S}, \delta F_{a b c d}^{P}, \delta H_{a b c d}$ determines $\delta \hat{F}_{a b c d}, \delta \hat{H}_{a b c d}$ and $\delta \tilde{F}_{a b c d}$
- The 3 mass counter tensors can be expressed with the above 6

Renormalisation

- $\delta F_{a b c d}^{S}, \delta F_{a b c d}^{P}, \delta H_{a b c d}$ determines $\delta \hat{F}_{a b c d}, \delta \hat{H}_{a b c d}$ and $\delta \tilde{F}_{a b c d}$
- The 3 mass counter tensors can be expressed with the above 6
- The non-trivial problem is to solve the following equations:
- $\left(\delta F_{a b m n}^{S / P}+4 T_{d}\left[\left(F_{a b c d}^{S / P}+\delta F_{a b c d}^{S / P}\right) F_{c d m n}^{S / P}+\left(H_{a b, c d}+\right.\right.\right.$
$\left.\left.\left.\delta H_{a b, c d}\right) H_{c d, m n}\right]\right) O_{m e}^{S / P} O_{n e}^{S} T_{F}\left(\tilde{M}_{S / P, e}^{2}\right)=0$
- $\left(\delta H_{a b, m n}+4 T_{d}\left[\left(F_{a b c d}^{S / P}+\delta F_{a b c d}^{S / P}\right) H_{c d, m n}+\left(H_{a b, c d}+\right.\right.\right.$

$$
\left.\left.\left.\delta H_{a b, c d}\right) F_{c d, m n}^{P / S}\right]\right) O_{m e}^{P / S} O_{n e}^{P / S} T_{F}\left(\tilde{M}_{P / S, e}^{2}\right)=0
$$

Renormalisation

- $\delta F_{a b c d}^{S}, \delta F_{a b c d}^{P}, \delta H_{a b c d}$ determines $\delta \hat{F}_{a b c d}, \delta \hat{H}_{a b c d}$ and $\delta \tilde{F}_{a b c d}$
- The 3 mass counter tensors can be expressed with the above 6
- The non-trivial problem is to solve the following equations:
- $\left(\delta F_{a b m n}^{S / P}+4 T_{d}\left[\left(F_{a b c d}^{S / P}+\delta F_{a b c d}^{S / P}\right) F_{c d m n}^{S / P}+\left(H_{a b, c d}+\right.\right.\right.$

$$
\left.\left.\left.\hat{\delta} H_{a b, c d}\right) H_{c d, m n}\right]\right) O_{m e}^{S / P} O_{n e}^{S} T_{F}\left(\tilde{M}_{S / P, e}^{2}\right)=0
$$

- $\left(\delta H_{a b, m n}+4 T_{d}\left[\left(F_{a b c d}^{S / P}+\delta F_{a b c d}^{S / P}\right) H_{c d, m n}+\left(H_{a b, c d}+\right.\right.\right.$ $\left.\left.\left.\delta H_{a b, c d}\right) F_{c d, m n}^{P / S}\right]\right) O_{m e}^{P / S} O_{n e}^{P / S} T_{F}\left(\tilde{M}_{P / S, e}^{2}\right)=0$
- Assuming that the the spectrum contains enough different masses, the projecting is irrelevant

Renormalisation

- The coupling and the counter tensors are linear combinations of independent rank-4 invariant tensors (t^{α}) of the symmetry group
- $F_{a b c d}^{S / P}=\sum_{\alpha} f_{\alpha}^{S / P} t_{a b c d}^{\alpha}, \quad H_{a b c d}=\sum_{\alpha} h_{\alpha} t_{a b c d}^{\alpha}$
- $\delta F_{a b c d}^{S / P}=\sum_{\alpha} \delta f_{\alpha}^{S / P} t_{a b c d}^{\alpha}, \quad \delta H_{a b c d}=\sum_{\alpha} \delta h_{\alpha} t_{a b c d}^{\alpha}$

Renormalisation

- The coupling and the counter tensors are linear combinations of independent rank-4 invariant tensors (t^{α}) of the symmetry group
- $F_{a b c d}^{S / P}=\sum_{\alpha} f_{\alpha}^{S / P} t_{a b c d}^{\alpha}, \quad H_{a b c d}=\sum_{\alpha} h_{\alpha} t_{a b c d}^{\alpha}$
- $\delta F_{a b c d}^{S / P}=\sum_{\alpha} \delta f_{\alpha}^{S / P} t_{a b c d}^{\alpha}, \quad \delta H_{a b c d}=\sum_{\alpha} \delta h_{\alpha} t_{a b c d}^{\alpha}$
- It is useful to work out a multiplication table for these invariants: $t_{a b c d}^{\alpha} t_{c d e f}^{\beta}=\sum_{\gamma} g_{\alpha \beta \gamma} t_{a b e f}^{\gamma}$
- After determing the $g_{\alpha \beta \gamma}$ coefficients, $\delta f_{\alpha}^{S / P}, \delta h_{\alpha}$ counterterms can be easily expressed, since the equations are linear

$\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N}=3$ case

- In this model the four-point coupling tensors $F_{a b c d}^{S / P}$ and $H_{a b c d}$ can be written in the following form:

$$
\begin{aligned}
& F_{a b c d}^{S}=F_{a b c d}^{P}=\frac{g_{1}}{4} \delta_{a b} \delta_{c d}+\frac{g_{1}}{4}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)+ \\
& \frac{g_{2}}{8} d_{a b m} d_{c d m}+\frac{g_{2}}{8}+\left(d_{a c m} d_{b d m}+d_{a d m} d_{b c m}\right)
\end{aligned}
$$

- $H_{a b, c d}=\frac{1}{4}\left(g_{1}+\frac{2 g_{2}}{N}\right) \delta_{a b} \delta_{c d}-\frac{g_{2}}{4 N}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)+$ $\frac{3 g_{2}}{8} d_{a b m} d_{c d m}-\frac{g_{2}}{8}\left(d_{a c m} d_{b d m}+d_{a d m} d_{b c m}\right)$
- Definition of d tensors: $\left\{\lambda_{i}, \lambda_{j}\right\}=\frac{4}{N} \delta_{i j}+2 d_{i j k} \lambda_{k}$

$\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N}=3$ case

- In this model the four-point coupling tensors $F_{a b c d}^{S / P}$ and $H_{a b c d}$ can be written in the following form:

$$
F_{a b c d}^{S}=F_{a b c d}^{P}=\frac{g_{1}}{4} \delta_{a b} \delta_{c d}+\frac{g_{1}}{4}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)+
$$

$$
\frac{g_{2}}{8} d_{a b m} d_{c d m}+\frac{g_{2}}{8}+\left(d_{a c m} d_{b d m}+d_{a d m} d_{b c m}\right)
$$

- $H_{a b, c d}=\frac{1}{4}\left(g_{1}+\frac{2 g_{2}}{N}\right) \delta_{a b} \delta_{c d}-\frac{g_{2}}{4 N}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)+$

$$
\frac{3 g_{2}}{8} d_{a b m} d_{c d m}-\frac{g_{2}}{8}\left(d_{a c m} d_{b d m}+d_{a d m} d_{b c m}\right)
$$

- Definition of d tensors: $\left\{\lambda_{i}, \lambda_{j}\right\}=\frac{4}{N} \delta_{i j}+2 d_{i j k} \lambda_{k}$
- The indicated set of 4 invariants is closed under multiplication

$\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N}=3$ case

- In this model the four-point coupling tensors $F_{a b c d}^{S / P}$ and $H_{a b c d}$ can be written in the following form:

$$
\begin{aligned}
& F_{a b c d}^{S}=F_{a b c d}^{P}=\frac{g_{1}}{4} \delta_{a b} \delta_{c d}+\frac{g_{1}}{4}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)+ \\
& \frac{g_{2}}{8} d_{a b m} d_{c d m}+\frac{g_{2}}{8}+\left(d_{a c m} d_{b d m}+d_{a d m} d_{b c m}\right) \\
- & H_{a b, c d}=\frac{1}{4}\left(g_{1}+\frac{2 g_{2}}{N}\right) \delta_{a b} \delta_{c d}-\frac{g_{2}}{4 N}\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)+ \\
& \frac{3 g_{2}}{8} d_{a b m} d_{c d m}-\frac{g_{2}}{8}\left(d_{a c m} d_{b d m}+d_{a d m} d_{b c m}\right)
\end{aligned}
$$

- Definition of d tensors: $\left\{\lambda_{i}, \lambda_{j}\right\}=\frac{4}{N} \delta_{i j}+2 d_{i j k} \lambda_{k}$
- The indicated set of 4 invariants is closed under multiplication
- Special case $N=3$: there are only 3 invariants, because of the relation:
$d_{a b m} d_{c d m}+d_{a c m} d_{b d m}+d_{a d m} d_{b c m}=\frac{1}{3}\left(\delta_{a b} \delta_{c d}+\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{b c}\right)$
- One realises that $\delta F^{P}=\delta F^{S}$, therefore there are 6 counter terms: $\delta f_{1}, \delta f_{2}, \delta f_{3}, \delta h_{1}, \delta h_{2}, \delta h_{3}$ and 6 equations

$\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N}=3$ case

- The equations are the following:

$\operatorname{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N}=3$ case

- The equations are the following:
- $\delta f_{1}=-8 T_{d}\left[5 f\left(f+\delta f_{1}\right)+f\left(f+\delta f_{2}\right)+4 h_{1}\left(h_{1}+\delta h_{1}\right)+\right.$ $\left.h_{1}\left(h_{2}+\delta h_{2}\right)+h_{2}\left(h_{1}+\delta h_{1}\right)\right]$
- $\delta f_{2}=-8 T_{d}\left[f\left(f+\delta f_{2}\right)+h_{2}\left(h_{2}+\delta h_{2}\right)\right]$
- $\delta f_{3}=-8 T_{d}\left[f \delta f_{3}+h_{3}\left(h_{2}+\delta h_{2}\right)+\left(h_{2}+5 h_{3} / 6\right)\left(h_{3}+\delta h_{3}\right)\right]$
- $\delta h_{1}=-8 T_{d}\left[\left(4 h_{1}+h_{2}\right)\left(f+\delta f_{1}\right)+h_{1}\left(f+\delta f_{2}\right)+5 f\left(h_{1}+\right.\right.$ $\left.\left.\delta h_{1}\right)+f\left(h_{2}+\delta h_{2}\right)\right]$
- $\delta h_{2}=-8 T_{d}\left[h_{2}\left(f+\delta f_{2}\right)+f\left(h_{2}+\delta h_{2}\right)\right]$
- $\delta h_{3}=-8 T_{d}\left[h_{3}\left(f+\delta f_{2}\right)+\delta f_{3}\left(h_{2}+5 h_{3} / 6\right)+f\left(h_{3}+\delta h_{3}\right)\right]$

$\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N}=3$ case

- The equations are the following:
- $\delta f_{1}=-8 T_{d}\left[5 f\left(f+\delta f_{1}\right)+f\left(f+\delta f_{2}\right)+4 h_{1}\left(h_{1}+\delta h_{1}\right)+\right.$ $\left.h_{1}\left(h_{2}+\delta h_{2}\right)+h_{2}\left(h_{1}+\delta h_{1}\right)\right]$
- $\delta f_{2}=-8 T_{d}\left[f\left(f+\delta f_{2}\right)+h_{2}\left(h_{2}+\delta h_{2}\right)\right]$
- $\delta f_{3}=-8 T_{d}\left[f \delta f_{3}+h_{3}\left(h_{2}+\delta h_{2}\right)+\left(h_{2}+5 h_{3} / 6\right)\left(h_{3}+\delta h_{3}\right)\right]$
- $\delta h_{1}=-8 T_{d}\left[\left(4 h_{1}+h_{2}\right)\left(f+\delta f_{1}\right)+h_{1}\left(f+\delta f_{2}\right)+5 f\left(h_{1}+\right.\right.$ $\left.\left.\delta h_{1}\right)+f\left(h_{2}+\delta h_{2}\right)\right]$
- $\delta h_{2}=-8 T_{d}\left[h_{2}\left(f+\delta f_{2}\right)+f\left(h_{2}+\delta h_{2}\right)\right]$
- $\delta h_{3}=-8 T_{d}\left[h_{3}\left(f+\delta f_{2}\right)+\delta f_{3}\left(h_{2}+5 h_{3} / 6\right)+f\left(h_{3}+\delta h_{3}\right)\right]$
- They are linear, easy to solve them

$\operatorname{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N} \rightarrow \infty$ case

- The general $\mathrm{SU}(\mathrm{N})$ tensors' multiplication table contains only one product which scales with N^{2}, this is the only one which counts while solving the equations for counter terms
- $\delta_{a b} \delta_{c d} * \delta_{c d} \delta_{e f}=\left(N^{2}-1\right) \delta_{a b} \delta_{e f}$

SU(N) \times SU(N) meson model, $N \rightarrow \infty$ case

- The general $\operatorname{SU}(\mathrm{N})$ tensors' multiplication table contains only one product which scales with N^{2}, this is the only one which counts while solving the equations for counter terms
- $\delta_{a b} \delta_{c d} * \delta_{c d} \delta_{e f}=\left(N^{2}-1\right) \delta_{a b} \delta_{e f}$
- In this case there will be 2 counter terms: $\delta f_{1}, \delta h_{1}$
- $\delta f_{1}+4 T_{d} N^{2}\left(\left(f_{1}+\delta f_{1}\right) f_{1}+\left(h_{1}+\delta h_{1}\right) h_{1}\right)=0$
- $\delta h_{1}+4 T_{d} N^{2}\left(\left(f_{1}+\delta f_{1}\right) h_{1}+\left(h_{1}+\delta h_{1}\right) f_{1}\right)=0$

$\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ meson model, $\mathrm{N} \rightarrow \infty$ case

- The general $\operatorname{SU}(\mathrm{N})$ tensors' multiplication table contains only one product which scales with N^{2}, this is the only one which counts while solving the equations for counter terms
- $\delta_{a b} \delta_{c d} * \delta_{c d} \delta_{e f}=\left(N^{2}-1\right) \delta_{a b} \delta_{e f}$
- In this case there will be 2 counter terms: $\delta f_{1}, \delta h_{1}$
- $\delta f_{1}+4 T_{d} N^{2}\left(\left(f_{1}+\delta f_{1}\right) f_{1}+\left(h_{1}+\delta h_{1}\right) h_{1}\right)=0$
- $\delta h_{1}+4 T_{d} N^{2}\left(\left(f_{1}+\delta f_{1}\right) h_{1}+\left(h_{1}+\delta h_{1}\right) f_{1}\right)=0$
- Since at large $N f_{1}=h_{1}=g_{1} / 4$, one can consistently choose $\delta h_{1}=\delta f_{1}=: \delta g_{1} \rightarrow$ one single counterterm is enough to renormalise the theory
- We get $\delta g_{1}=-\frac{2 N^{2} T_{d} g_{1}^{2}}{1+2 N^{2} T_{d} g_{1}}$, which coincides with the $\mathrm{O}\left(2 \mathrm{~N}^{2}\right)$ model's coupling counterterm at large N

$\mathrm{U}(3) \times \mathrm{U}(3)$ model

- The group algebra modifies as: $\left\{\lambda_{a}, \lambda_{b}\right\}=d_{a b c} \lambda_{c}$ with $d_{a b 0}=\sqrt{\frac{2}{N}} \delta_{a b}$
- F and H coupling tensors' expression do not change, but all the indices run from 0 to 8

$\mathrm{U}(3) \times \mathrm{U}(3)$ model

- The group algebra modifies as: $\left\{\lambda_{a}, \lambda_{b}\right\}=d_{a b c} \lambda_{c}$ with $d_{a b 0}=\sqrt{\frac{2}{N}} \delta_{a b}$
- F and H coupling tensors' expression do not change, but all the indices run from 0 to 8
- $\mathrm{U}(3)$ can also be interpreted as a direct product of an $\mathrm{SU}(3)$ and a $U(1)$ groups
- The F and H tensors can not be expressed with 3 invariant tensors closing under multiplication

$U(3) \times U(3)$ model

- The group algebra modifies as: $\left\{\lambda_{a}, \lambda_{b}\right\}=d_{a b c} \lambda_{c}$ with $d_{a b 0}=\sqrt{\frac{2}{N}} \delta_{a b}$
- F and H coupling tensors' expression do not change, but all the indices run from 0 to 8
- $\mathrm{U}(3)$ can also be interpreted as a direct product of an $\mathrm{SU}(3)$ and a $U(1)$ groups
- The F and H tensors can not be expressed with 3 invariant tensors closing under multiplication
- The minimum set of invariants has to contain 9 invariant tensors
- It means that 18 different counter terms have to be determined

$\mathrm{U}(3) \times \mathrm{U}(3)$ model

- The used invariant tensors:
- $t_{a b c d}^{1}=\delta_{a b} \delta_{c d}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)$,
$t_{a b c d}^{2}=\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{c b}\right)\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)$,
$t_{a b c d}^{3}=d_{a b m} d_{c d m}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)$,

$\mathrm{U}(3) \times \mathrm{U}(3)$ model

- The used invariant tensors:

$$
\begin{aligned}
& -t_{a b c d}^{1}=\delta_{a b} \delta_{c d}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right), \\
& t_{a b c d}^{2}=\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{c b}\right)\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right), \\
& t_{a b c d}^{3}=d_{a b m} d_{c d m}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right), \\
& t_{a b c d}^{4}=\delta_{a b}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right) \delta_{c 0} \delta_{d 0}, \\
& t_{a b c d}^{5}=\delta_{c d}\left(1-\delta_{c 0}\right)\left(1-\delta_{c 0}\right) \delta_{a 0} \delta_{b 0}, \\
& t_{a b c d}^{6}= \\
& \delta_{a d}^{6} \delta_{b 0} \delta_{c 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{d 0}\right)+\delta_{a c} \delta_{b 0} \delta_{d 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{c 0}\right)+ \\
& \delta_{b d} \delta_{a 0} \delta_{c 0}\left(1-\delta_{b 0}\right)\left(1-\delta_{d 0}\right)+\delta_{b c} \delta_{a 0} \delta_{d 0}\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right), \\
& t_{a b c d}^{7}=d_{a c d} \delta_{b 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)+ \\
& d_{a b d} \delta_{c 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{d 0}\right), \\
& t_{a b c d}^{8}=d_{a b c} \delta_{d 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)+ \\
& d_{a b d} \delta_{d 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c d}\right),
\end{aligned}
$$

$\mathrm{U}(3) \times \mathrm{U}(3)$ model

- The used invariant tensors:
- $t_{a b c d}^{1}=\delta_{a b} \delta_{c d}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)$,
$t_{a b c d}^{2}=\left(\delta_{a c} \delta_{b d}+\delta_{a d} \delta_{c b}\right)\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)$,
$t_{a b c d}^{3}=d_{a b m} d_{c d m}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)$,
- $t_{a b c d}^{4}=\delta_{a b}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right) \delta_{c 0} \delta_{d 0}$,
$t_{a b c d}^{5}=\delta_{c d}\left(1-\delta_{c 0}\right)\left(1-\delta_{c 0}\right) \delta_{a 0} \delta_{b 0}$,
$t_{a b c d}^{6}=$
$\delta_{a d} \delta_{b 0} \delta_{c 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{d 0}\right)+\delta_{a c} \delta_{b 0} \delta_{d 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{c 0}\right)+$
$\delta_{b d} \delta_{a 0} \delta_{c 0}\left(1-\delta_{b 0}\right)\left(1-\delta_{d 0}\right)+\delta_{b c} \delta_{a 0} \delta_{d 0}\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)$,
$t_{a b c d}^{7}=d_{a c d} \delta_{b 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{c 0}\right)\left(1-\delta_{d 0}\right)+$
$d_{a b d} \delta_{c 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{d 0}\right)$,
$t_{a b c d}^{8}=d_{a b c} \delta_{d 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c 0}\right)+$
$d_{a b d} \delta_{d 0}\left(1-\delta_{a 0}\right)\left(1-\delta_{b 0}\right)\left(1-\delta_{c d}\right)$,
- $t_{a b c d}^{9}=\delta_{a 0} \delta_{b 0} \delta_{c 0} \delta_{d 0}$.

Solving the finite gap equations and the equation of state

- The earlier model can be extended:

$$
\begin{aligned}
& \Delta L=c\left[\operatorname{det}\left(\lambda_{a}\left(\sigma_{a}+i \pi_{a}\right)\right)+\operatorname{det}\left(\lambda_{a}\left(\sigma_{a}+i \pi_{a}\right)\right)^{\dagger}\right]+ \\
& \operatorname{Tr}\left[\lambda_{a} h_{a}\left(\lambda_{b}\left(\sigma_{b}+i \pi_{b}\right)+\left(\lambda_{b}\left(\sigma_{b}+i \pi_{b}\right)\right)^{\dagger}\right)\right]
\end{aligned}
$$

- The non-zero expectation values are set to: $\bar{\sigma}_{0}, \bar{\sigma}_{8}$

Solving the finite gap equations and the equation of state

- The earlier model can be extended:

$$
\begin{aligned}
& \Delta L=c\left[\operatorname{det}\left(\lambda_{a}\left(\sigma_{a}+i \pi_{a}\right)\right)+\operatorname{det}\left(\lambda_{a}\left(\sigma_{a}+i \pi_{a}\right)\right)^{\dagger}\right]+ \\
& \operatorname{Tr}\left[\lambda_{a} h_{a}\left(\lambda_{b}\left(\sigma_{b}+i \pi_{b}\right)+\left(\lambda_{b}\left(\sigma_{b}+i \pi_{b}\right)\right)^{\dagger}\right)\right]
\end{aligned}
$$

- The non-zero expectation values are set to: $\bar{\sigma}_{0}, \bar{\sigma}_{8}$
- In this case the model's parameters are: $c, \mu, g_{1}, g_{2}, h_{0}, h_{8}$, M_{0}, T
- There are 8 gap equations +2 equations for the angles of the diagonalizing matrices +2 equations of state $\rightarrow 12$ equations have to be solved simultaneously

Solving the finite gap equations and the equation of state

- The earlier model can be extended:

$$
\begin{aligned}
& \Delta L=c\left[\operatorname{det}\left(\lambda_{a}\left(\sigma_{a}+i \pi_{a}\right)\right)+\operatorname{det}\left(\lambda_{a}\left(\sigma_{a}+i \pi_{a}\right)\right)^{\dagger}\right]+ \\
& \operatorname{Tr}\left[\lambda_{a} h_{a}\left(\lambda_{b}\left(\sigma_{b}+i \pi_{b}\right)+\left(\lambda_{b}\left(\sigma_{b}+i \pi_{b}\right)\right)^{\dagger}\right)\right]
\end{aligned}
$$

- The non-zero expectation values are set to: $\bar{\sigma}_{0}, \bar{\sigma}_{8}$
- In this case the model's parameters are: $c, \mu, g_{1}, g_{2}, h_{0}, h_{8}$, M_{0}, T
- There are 8 gap equations +2 equations for the angles of the diagonalizing matrices +2 equations of state $\rightarrow 12$ equations have to be solved simultaneously
- The main goal is to get the condensates and the masses as a function of the temperature
- The first step: parametrisation \rightarrow change the variables, fix 4 masses at zero temperature and a given renormalisation scale

Summary

- Renormalization procedure for various types of multicomponent scalar models
- The explicit construction of the counter terms
- 2 examples: $\mathrm{SU}(\mathrm{N}) \times \mathrm{SU}(\mathrm{N})$ and $\mathrm{U}(3) \times \mathrm{U}(3)$ models
- Solving the finite equations, the mass spectrum scale dependence at zero temperature
- Near future: thermodynamics


```
    M_eta'
```

