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Outline

I Renormalisation of the gap equations and the equation of
state in general models

I The method of constructing the counter-terms for invariant
tensor structures

I Example 1: SU(N)× SU(N) meson model, focusing on N= 3
and N →∞

I Example 2: U(3)× U(3) meson model

I Solving the renormalised equations using phenomenological
input

I Mass spectra at zero temperature
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Renormalisation

I Consider a general Lagrangian:
L = 1

2 [∂µσa∂
µσa + ∂µπa∂

µπa − µ2
Sσaσa − µ2

Pπaπa]−
1
3F S

abcdσaσbσcσd − 1
3FP

abcdπaπbπcπd − 2Hab,cdπaπbσcσd

I It fits the O(N), and also the SU(N)×SU(N) model with
M= Ta(σa + iπa)

I It is assumed, that only the sigma field has non-zero
expectation value

I The 2PI effective potential is the following:
V = 1

2µ
2
ab,S σ̄aσ̄b + 1

3F S
abcd σ̄aσ̄bσ̄c σ̄d − i

2

∫
k [D−1S

ab GS
ba +

D−1P
ab GP

ba]−− i
2

∫
k [lnG−1S

aa + lnG−1P
aa ] + V2 + V ct

I In Hartree approximation V2 contains the double bubble
diagrams in the theory

I V ct contains the counter-terms
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Renormalisation

I Counter-term structure: V ct = V ct
4 + V ct

2 + V ct
0

I V ct
4 = 1

2δµ̃
2
ab,S σ̄aσ̄b + 1

3δF̃abcd σ̄aσ̄bσ̄c σ̄d

I V ct
2 = 1

2δµ̂
2
ab,S

∫
k GS

ba(k) + 1
2δµ̂

2
ab,P

∫
k GP

ba(k) +

4δF̂abcd

∫
k GS

ab(k)σ̄c σ̄d + 4δĤabcd

∫
k GP

ab(k)σ̄c σ̄d

I V ct
0 = δF S

abcd

∫
k GS

ab(k)
∫
p GS

cd(p) +

δFP
abcd

∫
k GP

ab(k)
∫
p GP

cd(p) + 2δHabcd

∫
k GS

ab(k)
∫
p GP

cd(p)

I 9 different counter tensors

I The stationary conditions: δV

δGP,S
ab

= 0, δVδσ̄a
= 0 give the gap

equations and the equation of state

I One has to separate the finite parts from the divergences, in
the tadpole integrals M0 renormalisation scale has to be
introduced
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Renormalisation

I With the notation
MS ,P

cd = OS ,P
ce OS ,P

de M̃2
e ,

∫
k GS ,P

cd = OS,P
ce OS,P

de T (M̃2
S ;P,e),

the finite parts are:

I P gap: M2
ab,P =

µ2
ab,P + 4HabcdOS

ceO
S
deTF (M̃2

S ,e) + 4FP
abcdOP

ceO
P
deTF (M̃2

P,e)

I S gap: M2
ab,S = µ2

ab,S + 4F S
abcd σ̄c σ̄d +

4F S
abcdOS

ceO
S
deTF (M̃2

S,e) + 4HabcdOP
ceO

P
deTF (M̃2

P,e)

I Eq. of state: M2
ab,S σ̄b = 8

3F S
abcd σ̄bσ̄c σ̄d

I Types of divergences: σ̄ independent, σ̄ dependent overall
divergences, TF dependent subdivergences → it must be
ensured that all types of these expressions vanish
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Renormalisation

I δF S
abcd , δF

P
abcd , δHabcd determines δF̂abcd , δĤabcd and δF̃abcd

I The 3 mass counter tensors can be expressed with the above 6

I The non-trivial problem is to solve the following equations:

I
(
δF

S/P
abmn + 4Td [(F

S/P
abcd + δF

S/P
abcd)F

S/P
cdmn + (Hab,cd +

δHab,cd)Hcd ,mn]
)
O

S/P
me OS

neTF (M̃2
S/P,e) = 0

I
(
δHab,mn + 4Td [(F

S/P
abcd + δF

S/P
abcd)Hcd ,mn + (Hab,cd +

δHab,cd)F
P/S
cd ,mn]

)
O

P/S
me O

P/S
ne TF (M̃2

P/S,e) = 0

I Assuming that the the spectrum contains enough different
masses, the projecting is irrelevant
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Renormalisation

I The coupling and the counter tensors are linear combinations
of independent rank-4 invariant tensors (tα) of the symmetry
group

I F
S/P
abcd =

∑
α f

S/P
α tαabcd , Habcd =

∑
α hαtαabcd

I δF
S/P
abcd =

∑
α δf

S/P
α tαabcd , δHabcd =

∑
α δhαtαabcd

I It is useful to work out a multiplication table for these
invariants: tαabcd tβcdef =

∑
γ gαβγt

γ
abef

I After determing the gαβγ coefficients, δf
S/P
α , δhα

counterterms can be easily expressed, since the equations are
linear
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SU(N)×SU(N) meson model, N=3 case

I In this model the four-point coupling tensors F
S/P
abcd and Habcd

can be written in the following form:
F S

abcd = FP
abcd = g1

4 δabδcd + g1
4 (δacδbd + δadδbc) +

g2
8 dabmdcdm + g2

8 + (dacmdbdm + dadmdbcm)

I Hab,cd = 1
4 (g1 + 2g2

N )δabδcd − g2
4N (δacδbd + δadδbc) +

3g2
8 dabmdcdm − g2

8 (dacmdbdm + dadmdbcm)

I Definition of d tensors: {λi , λj} = 4
N δij + 2dijkλk

I The indicated set of 4 invariants is closed under multiplication

I Special case N= 3: there are only 3 invariants, because of the
relation:
dabmdcdm +dacmdbdm +dadmdbcm = 1

3 (δabδcd +δacδbd +δadδbc)

I One realises that δFP = δF S , therefore there are 6 counter
terms: δf1, δf2, δf3, δh1, δh2, δh3 and 6 equations
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Gergely Fejős Phenomenological applications of the 2PI Hartree approximation



SU(N)×SU(N) meson model, N=3 case

I In this model the four-point coupling tensors F
S/P
abcd and Habcd

can be written in the following form:
F S

abcd = FP
abcd = g1

4 δabδcd + g1
4 (δacδbd + δadδbc) +

g2
8 dabmdcdm + g2

8 + (dacmdbdm + dadmdbcm)

I Hab,cd = 1
4 (g1 + 2g2

N )δabδcd − g2
4N (δacδbd + δadδbc) +

3g2
8 dabmdcdm − g2

8 (dacmdbdm + dadmdbcm)

I Definition of d tensors: {λi , λj} = 4
N δij + 2dijkλk

I The indicated set of 4 invariants is closed under multiplication

I Special case N= 3: there are only 3 invariants, because of the
relation:
dabmdcdm +dacmdbdm +dadmdbcm = 1

3 (δabδcd +δacδbd +δadδbc)

I One realises that δFP = δF S , therefore there are 6 counter
terms: δf1, δf2, δf3, δh1, δh2, δh3 and 6 equations
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SU(N)×SU(N) meson model, N=3 case

I The equations are the following:

I δf1 = −8Td [5f (f + δf1) + f (f + δf2) + 4h1(h1 + δh1)+
h1(h2 + δh2) + h2(h1 + δh1)]

I δf2 = −8Td [f (f + δf2) + h2(h2 + δh2)]

I δf3 = −8Td [f δf3 + h3(h2 + δh2) + (h2 + 5h3/6)(h3 + δh3)]

I δh1 = −8Td [(4h1 + h2)(f + δf1) + h1(f + δf2) + 5f (h1+
δh1) + f (h2 + δh2)]

I δh2 = −8Td [h2(f + δf2) + f (h2 + δh2)]

I δh3 = −8Td [h3(f + δf2) + δf3(h2 + 5h3/6) + f (h3 + δh3)]

I They are linear, easy to solve them
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SU(N)×SU(N) meson model, N →∞ case

I The general SU(N) tensors’ multiplication table contains only
one product which scales with N2, this is the only one which
counts while solving the equations for counter terms

I δabδcd*δcdδef = (N2 − 1)δabδef

I In this case there will be 2 counter terms: δf1, δh1

I δf1 + 4TdN2((f1 + δf1)f1 + (h1 + δh1)h1) = 0

I δh1 + 4TdN2((f1 + δf1)h1 + (h1 + δh1)f1) = 0

I Since at large N f1 = h1 = g1/4, one can consistently choose
δh1 = δf1 =: δg1 → one single counterterm is enough to
renormalise the theory

I We get δg1 = − 2N2Tdg2
1

1+2N2Tdg1
, which coincides with the O(2N2)

model’s coupling counterterm at large N
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U(3)×U(3) model

I The group algebra modifies as: {λa, λb} = dabcλc with

dab0 =
√

2
N δab

I F and H coupling tensors’ expression do not change, but all
the indices run from 0 to 8

I U(3) can also be interpreted as a direct product of an SU(3)
and a U(1) groups

I The F and H tensors can not be expressed with 3 invariant
tensors closing under multiplication

I The minimum set of invariants has to contain 9 invariant
tensors

I It means that 18 different counter terms have to be
determined
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U(3)×U(3) model

I The used invariant tensors:

I t1
abcd = δabδcd(1− δa0)(1− δb0)(1− δc0)(1− δd0),

t2
abcd = (δacδbd + δadδcb)(1− δa0)(1− δb0)(1− δc0)(1− δd0),

t3
abcd = dabmdcdm(1− δa0)(1− δb0)(1− δc0)(1− δd0),

I t4
abcd = δab(1− δa0)(1− δb0)δc0δd0,

t5
abcd = δcd(1− δc0)(1− δc0)δa0δb0,

t6
abcd =
δadδb0δc0(1− δa0)(1− δd0) + δacδb0δd0(1− δa0)(1− δc0)+
δbdδa0δc0(1− δb0)(1− δd0) + δbcδa0δd0(1− δb0)(1− δc0),
t7
abcd = dacdδb0(1− δa0)(1− δc0)(1− δd0)+

dabdδc0(1− δa0)(1− δb0)(1− δd0),
t8
abcd = dabcδd0(1− δa0)(1− δb0)(1− δc0) +

dabdδd0(1− δa0)(1− δb0)(1− δcd),

I t9
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Solving the finite gap equations and the equation of state

I The earlier model can be extended:
∆L = c

[
det(λa(σa + iπa)) + det(λa(σa + iπa))†

]
+

Tr
[
λaha

(
λb(σb + iπb) + (λb(σb + iπb))†

)]
I The non-zero expectation values are set to: σ̄0, σ̄8

I In this case the model’s parameters are: c, µ, g1, g2, h0, h8,
M0, T

I There are 8 gap equations + 2 equations for the angles of the
diagonalizing matrices + 2 equations of state → 12 equations
have to be solved simultaneously

I The main goal is to get the condensates and the masses as a
function of the temperature

I The first step: parametrisation → change the variables, fix 4
masses at zero temperature and a given renormalisation scale
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Summary

I Renormalization procedure for various types of
multicomponent scalar models

I The explicit construction of the counter terms

I 2 examples: SU(N)×SU(N) and U(3)×U(3) models

I Solving the finite equations, the mass spectrum scale
dependence at zero temperature

I Near future: thermodynamics
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