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January 23, 2007



Perturbative resummation Momentum dependence Two loop scalar model Conclusions

goal: computation of correlation functions:

〈ÂB̂〉 = Tr %̂ÂB̂ Â(t) = e iHtÂ(0)e−iHt

Exact theory: path integral

for calculation: MC simulations

not all obervables are accessible

perturbation theory

UV safe (renormalization)

improveble (loop expansion)

often IR sensitive: becomes
non-convergent

gap equations

coming from resummation or
truncation of exact equations

IR safe (by construction)

renormalization?

improvability?
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Solution: if we could embed the resummed equations into the
framework of perturbation theory, all its difficulties would be
solved.
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If perturbation theory is non-convergent because of IR sensitive
diagrams:

identify the source of the bad convergence

resum the sensitive diagrams into an effective
propagator/vertex

use effective perturbation theory with the new
propagators/vertexes: this should be IR safe
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Example: tadpole mass resummation in Φ4 theory

Original set of diagrams for 4-point function
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Resum the tadpole
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Lessons:

in the resummation we have to include counterterm diagrams,
too

after resummation we still have a pertrubative series

in the new pert. series new counterterms are needed

in the new pert. series there are less diagrams
(the ones which are resummed, are missing)
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Continue with the last remark:

”
in the new pert. series there are less diagrams

(the ones which are resummed, are missing)”

we can emulate this effect by defining a perturbation theory – by
choosing appropriate counterterms –, where the necessary
diagrams are missing.
So let us define:

δm̄2 = −

This kills some diagrams in the original set
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Canceling diagrams by hand would result in a dubious
perturbation theory.

But canceling diagrams by counterterms means just a
different scheme.

We have to ensure that the physics is unchanged when we use
the other scheme. Require that the bare Lagrangian be the
same:

m2
0 = m2

orig + δm2 = m̄2 + δm̄2 = m̄2 − ,

or, rearranging:

m̄2 = m2
orig + + δm2,

which is just the tadpole equation.
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mass resummation & effective perturbation theory is
equivalent with ordinary perturbation theory in a specific
scheme (on-mass-shell scheme)

gap equation corresponds to the renormalization scheme
changing transformation

benefit: no UV problem for resummation!

easily extendible to static vertex resummation
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What to do in case of momentum dependent resummation?

eg.: 2PI resummation ≡ self energy resummation:
work with an effective propagator, where all self-energy diagrams
are resummed. In the effective perturbation theory there appears
no self-energy-insertion diagrams, ie. no 2PI diagrams.
The key point again: what are the missing diagrams?

+

if in a generic perturbation theory
there is a self-energy insertion

it is missing in the 2PI effective
pert.th.

The same effect can be obtained using specific counterterm:

δm2 = −
but momentum dependent counterterm??
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In principle we can introduce momentum dependent counterterms
by rearranging the original Lagrangian as

L =
1

2
ΦK (i∂)Φ− λR

24
Φ4 +

1

2
ΦδK (i∂)Φ− δλ

24
Φ4.

which is equivalent to the original Lagrangian if

Zp2 −m2
0 = K (p) + δK (p)

⇒ generic kernel and momentum dependent propagators come
together
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Consistency

A theory renormalizable with counterterms if (Weinberg-thm):

overall divergence is local

after removing subdivergences the diagram is overall divergent
or finite

these conditions are satisfied, if for p →∞

G (p + k) = G (p) + kµ∂µG (p) + . . . ,

the propagator can be power expanded
”
around infinity”.

Within this class, all choices lead to consistent perturbation theory.
It is satisfied for lot of propagators, including the exact one where
we expect G−1(p) = p2(ln p2)n + m2(ln p2)n asymptotically.
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Using this type of propagators, the divergence structure of δK (p)
is local:

δKdiv(p) = Adiv + Bdivp
2

despite the kernel and the counterterms are momentum
dependent, the divergences are local!

Only the finite parts can be nonlocal.

renormalization goes as usual: we determine δZ , δm2 and δλ
order by order. Divergences can depend on the kernel!

the local finite parts besides the infinities are ill-defined (as
usual). They can be determined by fixing values of
observables (renormalization conditions).
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After subtracting the infinities, we have to satisfy

ζp2 −m2 = K (p) + δKfin(p)

where ζ, m2 (and λ) is to be determined by the renorm. conditions.
Practical recipe:

we choose a reference scheme where ζ = 1 and we choose m2

and λ comfortably.

K-scheme: work with kernel K to avoid certain IR divergences.

for renormalization condition we choose those observables,
which can be well calculated both in the reference scheme and
in the K-schemes. Calculate their values in the reference
scheme. In the K-scheme, we determine ζ, m2 and λ to have
the same results for these observables.

alternatively: define the finite parts of the diagrams in a way
that ζ = 1 and the values of m2 and λ do not change, but the
3 chosen observable still yields the same result.
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which can be well calculated both in the reference scheme and
in the K-schemes. Calculate their values in the reference
scheme. In the K-scheme, we determine ζ, m2 and λ to have
the same results for these observables.

alternatively: define the finite parts of the diagrams in a way
that ζ = 1 and the values of m2 and λ do not change, but the
3 chosen observable still yields the same result.
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2PI resummation: we have seen that the appropriate counterterm
choice is:

δm2(p) = −Σ(p,K ),

where K is the kernel with which the self-energy is computed. The
consistency condition therefore reads:

ζp2 − m̄2 − Σfin(p,K ) = K (p),

a finite equation.
We define the

”
finite part” to satisfy

Σfin(p, reference) = Σfin(p,K ),

for two asymptotic momenta. Then we can fix ζ = 1, and
m̄2 = m2 (reference scheme mass) for any kernel

p2 −m2 − Σfin(p,K ) = K (p).
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Solution of 2PI equations at finite T

with successive approximation:

Kn+1(p) = p2 −m2 − Σfin[K
n](p).

We aim to calculate the spectral function: it determines all other
propagators.
At finite T the propagator is a matrix – except the retarded prop.
Also % = −1

2 Im Gret.

algoritmus:

%n(p) ⇒ propagators

propagators ⇒ retarded self energy (diagram calculation)

renormalization: ensure the reference scheme values for the
self-energies at two asymptotic momenta

retarded self-energy ⇒ Kn+1
ret

Kn+1
ret ⇒ %n+1
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One loop order

Diagram: T = ⇒ Σ[K ] = λ
2T [K ].

Define:

Tdiv =

∫
k0>0

d4k

(2π)4
%(k), Tfin =

∫
k0>0

d4k

(2π)4
2n(k0)%(k),

where n is the Bose-Einstein distribution.

reference scheme: 2PI scheme at T = 0. Because
normalization Tfin[Kref ,T = 0] = 0, ie. Σ = 0:

Kref(p) = p2 −m2

finite T : Σ[K ,T = 0] = Σ[Kref ,T = 0] satisfied trivially
⇒ ζ = 1, mR = m, and

K (p) = p2 −m2 − λT

2
Tfin[K ,T ].

Also determine δλ1 from the divergence of I =
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Two loop level

Σ2[K ](p) =
λ2

4
+

λ2

6
− λ

2
δK1 +

δλ1

2
.

and take δK1, δλ1 from the one-loop result.

reference scheme (2PI scheme at T = 0)

Kref(p) = p2 −m2 − λ2

6
Sfin[Kref ,T = 0](p),

where S is the sunset diagram, satisfying

Sfin(p
2 = m2) = 0, ∂p2Sfin(p2 = m2) = 0

Numerically: compute total contribution and subtract ap2 + b
function to satsify the ren. conditions.
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Two loop level

finite T solution

K (p) = p2 −m2 − λ

2
Tfin[K ,T ]− λ2

6
Sfin[K ,T ](p),

where to determine the finite value of S , we have to ensure the
asymptotic values to be the same as in the reference scheme:

Sfin[K ,T = 0](pas) = Sfin[Kref ,T = 0](pas).

Numerically: determine the complete contribution and
subtract from it an Ap2 + B function, to satisfy the as.
condition. This function has to be used also at finite T
(overall div. is T -independent)
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Results

spectral function at k = 3m momentum
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To resum AND renormalize an IR sensitive theory:

choose an IR safe renormalization scheme: counterterms
should remove IR sensitivity. Do physical calculations in this
IR safe perturbation theory.

we can use momentum dependent counterterms together with
new kernels: the divergences remain local

define a reference scheme with simple renormalization
conditions

determine the relation to a reference scheme by matching of
(in both scheme) IR safe quantities



Perturbative resummation Momentum dependence Two loop scalar model Conclusions

To resum AND renormalize an IR sensitive theory:

choose an IR safe renormalization scheme: counterterms
should remove IR sensitivity. Do physical calculations in this
IR safe perturbation theory.

we can use momentum dependent counterterms together with
new kernels: the divergences remain local

define a reference scheme with simple renormalization
conditions

determine the relation to a reference scheme by matching of
(in both scheme) IR safe quantities



Perturbative resummation Momentum dependence Two loop scalar model Conclusions

To resum AND renormalize an IR sensitive theory:

choose an IR safe renormalization scheme: counterterms
should remove IR sensitivity. Do physical calculations in this
IR safe perturbation theory.

we can use momentum dependent counterterms together with
new kernels: the divergences remain local

define a reference scheme with simple renormalization
conditions

determine the relation to a reference scheme by matching of
(in both scheme) IR safe quantities



Perturbative resummation Momentum dependence Two loop scalar model Conclusions

To resum AND renormalize an IR sensitive theory:

choose an IR safe renormalization scheme: counterterms
should remove IR sensitivity. Do physical calculations in this
IR safe perturbation theory.

we can use momentum dependent counterterms together with
new kernels: the divergences remain local

define a reference scheme with simple renormalization
conditions

determine the relation to a reference scheme by matching of
(in both scheme) IR safe quantities


	Perturbative resummation
	Momentum dependence
	Two loop scalar model
	One loop order
	Two loop level
	Results

	Conclusions

