$U_A(1)$ anomaly and η' mass from an infrared singular quark-gluon vertex

Reinhard Alkofer¹ Christian Fischer^{2,3} Richard Williams²

¹Uni Graz ²TU Darmstadt ³GSI Darmstadt

January 2008, Heviz

不同 医不可 医不可

outline

Introduction

- Motivation
- The $U_A(1)$ Problem

Dyson-Schwinger Studies in Landau Gauge

- Propagators
- Higher-order Green's functions
- Calculating anomalous mass
- Results

日本にも日

outline

Introduction

- Motivation
- The $U_A(1)$ Problem

2 Dyson-Schwinger Studies in Landau Gauge

- Propagators
- Higher-order Green's functions
- Calculating anomalous mass
- Results

Summary and Outlook

→ Ξ → → Ξ

< 61 b

- Long accepted: strong interaction described by QCD
- non-Abelian
 - asymptotic freedom perturbation theory
 - confinement no coloured asymptotic states

Despite accedence to this:

- no satisfactory understanding of confinement mechanism
 - \rightarrow expected to manifest in the IR dynamics

・ 伺 ト ・ ヨ ト ・ ヨ ト

Develop non-perturbative tools:

- Lattice QCD ab initio
- Functional methods (ERG, DSE) -truncations

Effective Theories (symmetry based):

• NJL, χ PT, Quark Models

All successful at describing range of meson observables

• No insight into confinement mechanism itself.

 \rightarrow dynamical symmetry breaking more important here than confinement.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Symmetries:

- Powerful tool in physics.
- No explicit dynamical calculations.

Group theory applied to quarks \rightarrow multiplets.

• QCD lagrangian in chiral limit. *u*, *d* light, extend to include *s*.

 $SU_L(3) \times SU_R(3)$ chiral symmetry

Octet of axial vector currents \implies 8 Goldstone bosons from

$$\partial_{\mu}\overline{\psi}\partial^{\mu}\gamma_{5}\lambda^{i}\psi=\mathbf{2}\overline{\psi}\gamma_{5}\left\{\lambda^{i},\boldsymbol{M}\right\}\psi$$

 \rightarrow immediate puzzle:

Predicts **ninth** isosinglet Goldstone boson ($\lambda^i \rightarrow 1$), $U_A(1)$ symmetry.

Only candidate pseudoscalar is the η' Chiral picture: Squares of Goldstone boson masses are linear in the quark mass.

- 2 light quarks: $m_{\eta'} < \sqrt{3}m_{\pi} \simeq$ 240*MeV*
- 3 light quarks: *s* heaviest meson

 $ightarrow m_{\eta'} < \sqrt{2} m_K \simeq 700 \textit{MeV}$

• Mass of \sim 958 MeV.

Conclude: η' not a Goldstone boson. $U_A(1)$ symmetry must be broken – by anomaly.

Solution to everything - instantons?!?

classical solution of Euclidean Yang-Mills equations of motion

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

Diagrammatically, $U_A(1)$ anomaly enters through Annihilation and recombination: $q\overline{q} \rightarrow \text{gluons} \rightarrow q\overline{q}$ in the isosinglet channel

 $J^P = 0^ J^P = 1^-$ Pseudoscalar Vector Amplitude contributes towards singlet mass.

 η_0 and η_8 not mass eigenstates. Working in singlet-octet basis:

$$\begin{aligned} |\pi\rangle &= \left(|u\overline{u}\rangle - |d\overline{d}\rangle \right) /\sqrt{2} \\ |\eta_8\rangle &= \left(|u\overline{u}\rangle + |d\overline{d}\rangle - 2 |s\overline{s}\rangle \right) /\sqrt{6} \\ |\eta_0\rangle &= \left(|u\overline{u}\rangle + |d\overline{d}\rangle + |s\overline{s}\rangle \right) /\sqrt{3} \end{aligned}$$

Mass squared mixing matrix:

$$M^2=\left(egin{array}{ccc} M_\pi^2 & 0 & 0 \ 0 & M_{88}^2 & M_{80}^2 \ 0 & M_{08}^2 & M_{00}^2+m_A^2 \end{array}
ight)$$

with m_A^2 contribution from annihilation channel.

 \rightarrow Diagonalise matrix:

 π decoupled from η octet-singlet.

Introduce mixing matrix

$$(\eta \quad \eta') = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \eta_8 \\ \eta_0 \end{pmatrix} . \tag{1}$$

Matrix elements $M_{00}, M_{08} = M_{80}, M_{88}$ related to masses of K, π and anomaly.

- Compute physical eigenstates for η , η' and mixing matrix.
- Determine mixing angle $\simeq -20^{\circ}$.

イロト 不得 トイヨト イヨト 二日

 \rightarrow Diagonalise matrix:

 π decoupled from η octet-singlet.

Introduce mixing matrix

$$(\eta \quad \eta') = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \eta_8 \\ \eta_0 \end{pmatrix}.$$
(1)

Matrix elements $M_{00}, M_{08} = M_{80}, M_{88}$ related to masses of K, π and anomaly.

- Compute physical eigenstates for η , η' and mixing matrix.
- Determine mixing angle $\simeq -20^{\circ}$.

Are instantons the only solution?

• $U_A(1)$ inextricably tied to the non-Abelian anomaly.

Kogut and Susskind identified the lowest order annihiliation graph containing the anomaly:

simple consideration of the dimensions
 → concluded D(p²) ~ 1/p⁴ give non-zero χ²

[J. B. Kogut and L. Susskind, Phys. Rev. D 10(1974) 3468.]

・ロト ・ 戸 ト ・ 三 ト ・ 三 ト

Kogut and Susskind Mechanism

Explored in simple NJL-like model (no running masses):

$$g^2 D_{\mu
u}(k) = T_{\mu
u}(k) \left(rac{8\pi\sigma}{k^4} + rac{16\pi^2/9}{k^2 \ln\left(e + k^2/\Lambda_{
m QCD}^2
ight)}
ight)$$

IR singular gluon, σ string tension.

 Calculated lowest order graph contributing to topological susceptibility

All inputs bare, $P^2 \rightarrow 0$ limit, $\Pi \neq 0$

Found:

$$egin{array}{lll} m_A^2 &\simeq rac{3N_f}{f_0^2}rac{\sigma}{\pi^4}\simeq 0.346~{
m GeV^2}\ m_\eta, m_{\eta'} &\simeq 430, 810~{
m MeV}\ heta &\simeq -30^\circ \end{array}$$

[L. von Smekal, A. Mecke and R. Alkofer, arXiv:hep-ph/9707210.]

outline

Introductio

- Motivation
- The $U_A(1)$ Problem

Dyson-Schwinger Studies in Landau Gauge

- Propagators
- Higher-order Green's functions
- Calculating anomalous mass
- Results

3 Summary and Outlook

3 1 4 3

Dyson-Schwinger equations Quark Propagator

- Depends:
 - Quark-gluon vertex.
 - Gluon propagatator.
 - Quark propagator.

 \rightarrow Understand YM sector before consider quarks.

ヨトイヨト

Dyson-Schwinger equations for ghost, gluon:

- Infinite tower
- Truncation scheme preserving UV anomalous dimensions
- Analytic solutions obtainable in IR
- IR singular ghost
- IR vanishing gluon

[C.S.Fischer and R.Alkofer, PRD 67, 0904020 (2003)]

Pure YM-sector: ghosts and gluons (no quarks)

• Propagators in Euclidean space:

$$D^G(p^2) = -rac{G(p^2)}{p^2} \,, \quad D^{ab}_{\mu
u} = \delta^{ab} \left(\delta_{\mu
u} - rac{p_\mu p_
u}{p^2}
ight) rac{Z(p^2)}{p^2} \,,$$

 $G(p^2), Z(p^2)$: ghost, gluon dressing functions respectively.

Described by power laws in IR:

$$G(p^2)\sim \left(p^2
ight)^{-\kappa} \;, \qquad Z(p^2)\sim (p^2)^{2\kappa} \quad \kappa\simeq 0.595353$$

 \rightarrow diverging ghost propagator and vanishing gluon.

[L. von Smekal, R. Alkofer and A. Hauck Phys. Rev. Lett. 79 (1997) 3591]

[D. Zwanziger, Phys. Rev. D 65 (2002) 094039]

[C. Lerche and L. von Smekal, Phys. Rev. D 65 (2002) 125006]

Running coupling from the ghost-gluon vertex:

$$\alpha(p^2) = \alpha_{\mu} G^2(p^2) Z(p^2) ,$$

Numerical results well-reproduced by fit:

$$\alpha_{\rm fit}(p^2) = \frac{\alpha_s(0)}{1 + p^2 / \Lambda_{\rm YM}^2} + \frac{4\pi}{\beta_0} \frac{p^2}{\Lambda_{\rm YM}^2 + p^2} \times \left(\frac{1}{\ln(p^2 / \Lambda_{\rm YM}^2)} - \frac{1}{p^2 / \Lambda_{\rm YM}^2 - 1}\right) .$$
(2)

[C.S.Fischer and R.Alkofer, PRD 67, 0904020 (2003)]

イロト イポト イヨト イヨト

3

Gluon dressing function

 Z(k²)/k² give IR exponent 2κ − 1 ≠ −2 NB: IR vanishing

 $(\kappa \simeq 0.595\ldots)$

Gluon dressing function

Look for singular behaviour in another structure.

Richard Williams (TU Darmstadt)

Hévíz Jan. 25 2008 17 / 30

4 6 1 1 4

The 161

Higher order Green's functions

Generalised for all scales vanishing symmetrically:

$$\Gamma^{n,m,l} \sim \left(p^2 / \Lambda_{\rm QCD}^2 \right)^{(n-m)\kappa - l/2}$$

	2n	:	external ghost legs
with	m	:	external gluon legs
	21	:	external quark legs

- Skeleton expansion.
 - \rightarrow leading IR behaviour seen at lowest order

[R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, arXiv:hep-ph/0607293.]

Higher order Green's functions

Generalised for all scales vanishing symmetrically:

$$\Gamma^{n,m,l} \sim \left(p^2 / \Lambda_{\rm QCD}^2 \right)^{(n-m)\kappa - l/2}$$

• Triangle anomaly - Q-G vertex IR exponents :
$$-\kappa - 1/2$$

Infrared singular!

[R. Alkofer, C. S. Fischer and F. J. Llanes-Estrada, arXiv:hep-ph/0607293.]

Leading diagrams in the IR

• Propagators from DS-equations - Yang-Mills.

- Ansatz for Γ_{3g} .
- Ansatz/fits for Γ_{qg} .

[Alkofer, Fischer, Lanes-Estrada, Schwenzer unpublished] ~

- Leading diagrams in the IR
- Large N expansion

- Propagators from DS-equations Yang-Mills.
- Ansatz for Γ_{3g} .
- Ansatz/fits for Γ_{qg} .

[Alkofer, Fischer, Lanes-Estrada, Schwenzer unpublished] ~

- Leading diagrams in the IR
- Large N expansion
- Coupling in Quark DSE

[Alkofer, Fischer, Lanes-Estrada, Schwenzer unpublished] ~

- Single out two Dirac structures: γ_{μ} and $-i(p_1 + p_2)_{\mu}$
- Corresponding fits for dressing functions:

$$\lambda_1(p_1, p_2) = \left(\frac{x}{d_1 + x}\right)^{-\kappa - 1/2} \left(\frac{d_1}{d_1 + x} + d_2 \log\left(\frac{x}{d_1} + 1\right)\right)^{-9/44}$$

$$\lambda_{3}(p_{1},p_{2}) = \frac{1}{\sqrt{(p_{1}+p_{2})^{2}}} \left(\frac{x}{d_{1}+x}\right)^{-\kappa-1/2} \left(\frac{d_{2}}{d_{2}+x}\right)^{n_{2}} \left(\frac{d_{3}}{d_{3}+x}\right)^{2}$$

- x is sum of all incoming momenta, $p_1^2 + p_2^2 + p_3^2$.
- λ_1 : $d_1 = 2.0, d_2 = 0.5$
- λ_3 : $d_1 = 4.0$, $d_2 = 0.5$, $d_3 = 0.5$, $n_1 = 1$, $n_2 = -0.5$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Single out two Dirac structures: γ_{μ} and $-i(p_1 + p_2)_{\mu}$
- All 12 structures contribute to IR. *L*₁, *L*₃ dominant rôle.

Naïve application to Diamond Diagram

Look at infrared exponents. γ_{μ} part of vertex.

Contribution	:	IR exponent
Four $\lambda_1(p^2)$:	$4 \cdot (-1/2 - \kappa)$
Two $Z(p^2)/p^2$:	$2\cdot(2\kappa-1)$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Naïve application to Diamond Diagram

Look at infrared exponents. γ_{μ} part of vertex.

Contribution	:	IR exponent
Four $\lambda_1(p^2)$:	$4 \cdot (-1/2 - \kappa)$
Two $Z(p^2)/p^2$:	$2\cdot(2\kappa-1)$
Sum	=	-4

 Quick counting: Satisfies Kogut-Susskind Find Π(P²) ≠ 0 for P² → 0?

Naïve application to Diamond Diagram

Look at infrared exponents. γ_{μ} part of vertex.

- IR exponents are of different momentum dependence.
- Loop integral *lowers* degree of divergence.

$$\Pi(P^2) = 0 \text{ in limit } P^2 \to 0$$

IR Collinear Singularities

Choose kinematics so as to manifestly exhibit soft-divergence.

- Gluon momentum *p*₃ small.
- Loop dominated by small δ , $\delta + p_3$ internal gluon momenta.
- External quark mom p₁ ~ p₂ can be large.
- 3-g vertex: all scales singularity, exponent -3κ .
- Internal QG-vertices: soft divergence, exponent β
 - \rightarrow Consistency with overall diagram

[Kai Schwenzer, Priv. Comm.]

IR Collinear Singularities

Choose kinematics so as to manifestly exhibit soft-divergence.

- Gluon momentum *p*₃ small.
- Loop dominated by small δ , $\delta + p_3$ internal gluon momenta.
- External quark mom p₁ ~ p₂ can be large.

$$(\mathbf{p}_{3})^{\beta} \propto \int d^{4} \delta \left(\delta^{2}\right)^{\beta} \left(\delta^{2}\right)^{2\kappa-1} \left(\delta^{2}+\mathbf{p}_{3}^{2}+\left(\delta+\mathbf{p}_{3}\right)^{2}\right)^{-3\kappa} \Gamma_{3g}^{0} \\ \left(\left(\delta+\mathbf{p}_{3}\right)^{2}\right)^{2\kappa-1} \left(\left(\delta+\mathbf{p}_{3}\right)^{2}\right)^{\beta}$$

[Kai Schwenzer, Priv. Comm.]

IR Collinear Singularities

Choose kinematics so as to manifestly exhibit soft-divergence.

- Gluon momentum p_3 small.
- Loop dominated by small δ , $\delta + p_3$ internal gluon momenta.
- External quark mom p₁ ~ p₂ can be large.

Consistency achieved with exponent:

$$\beta = -\kappa - 1/2$$

[Kai Schwenzer, Priv. Comm.]

E 6 4 E 6

Computing the Diamond diagram

$$\Pi(P^2) = \int rac{d^4k}{\left(2\pi
ight)^4} G^{ac}_{\mu
ho}(P,k) D^{\mu
u}_{ab}(k_+) D^{
ho\sigma}_{dc}(k_-) G^{db}_{\sigma
u}(-P,k) \; ,$$

The quark triangle can be factored as:

$$G^{ab}_{\mu
u} = rac{1}{2} \delta^{ab} 4_{\mu
ulphaeta} P^{lpha} k^{eta} \ I\left(P^2, k^2, k\cdot P
ight) \; ,$$

with I a (complicated) scalar integral.

Richard Williams (TU Darmstadt)

Computing the Diamond diagram

Required inputs:

- Quark propagator
- Gluon propagator
- Quark-gluon vertex
- Pseudoscalar Bethe-Salpeter Amplitude for $q\overline{q}$.

(solve GAP eqn) (from Yang-Mills) (from fits)

4 A 1

$$\Gamma_{tu}(p; P) = \int \frac{d^4k}{(2\pi)^4} K_{tu;rs}(p, k; P) [S(k_+)\Gamma(k; P)S(k_-)]_{sr}$$

• K quark-antiquark scattering kernel.

• Rest frame of meson: $P^2 = -M^2$ (Euclidean Space)

Pseudoscalar:

$$\Gamma(\boldsymbol{\rho}, \boldsymbol{P}) = \gamma_5 \left(\boldsymbol{E} - i \boldsymbol{P} \boldsymbol{F} - i \boldsymbol{\rho} \boldsymbol{\rho} \cdot \boldsymbol{P} \boldsymbol{G} - \left[\gamma_{\mu}, \gamma_{\nu} \right] \boldsymbol{P}_{\mu} \boldsymbol{\rho}_{\nu} \boldsymbol{H} \right)$$

Note *E* is leading component.

$$\Gamma_{tu}(p; P) = \int \frac{d^4k}{(2\pi)^4} K_{tu; rs}(p, k; P) [S(k_+)\Gamma(k; P)S(k_-)]_{sr}$$

ax-WGTI

$$P_{\mu}\Gamma^{a}_{5\mu}(k;P) = S^{-1}(k_{+})\frac{1}{2}\lambda^{a}_{f}i\gamma_{5} + \frac{1}{2}\lambda^{a}_{f}i\gamma_{5}S^{-1}(k_{-}) \\ -M_{\zeta}i\Gamma^{a}_{5}(k;P) - i\Gamma^{a}_{5}(k;P)M_{\zeta} .$$

BSE on left, DSE on right.

 \rightarrow intimate relationship between kernels.

3

$$\Gamma_{tu}(p; P) = \int \frac{d^4k}{(2\pi)^4} K_{tu; rs}(p, k; P) [S(k_+)\Gamma(k; P)S(k_-)]_{sr}$$

Only consistent known truncation Rainbow-ladder

- Bare vertex γ^{μ}
- Gluon ladder exchange.

Vertex allowed a dressing function: but only with a dependence on the gluon momentum

• Typically absorb into an effective Gluon.

$$\Gamma_{tu}(p; P) = \int \frac{d^4k}{(2\pi)^4} K_{tu; rs}(p, k; P) [S(k_+)\Gamma(k; P)S(k_-)]_{sr}$$

Only consistent known truncation Rainbow-ladder

Create a model:

- Take qualitative features of soft-singular quark-gluon vertex.
- Neglect *L*₃ tensor structure.
- Fit scales to meson phenomenology.

Compose from $g^2 \times$ Gluon \times Vertex Dressing.

$$\alpha_{eff}(z) = \alpha_{\mu} Z(z) \lambda_{1}(z)$$

$$\lambda_{1}(z) = \left(\frac{z}{z+d_{2}}\right)^{-1/2-\kappa} \\ \times \left(\frac{d_{1}}{1+z/d_{2}} + z\frac{d_{3}}{d_{2}^{2}+(z-d_{2})^{2}} + \frac{z}{d_{2}+z}\left(\frac{4\pi}{\beta_{0}\alpha_{\mu}}\left(\frac{1}{\log(z/d_{2})} - \frac{1}{z/d_{2}-1}\right)\right)^{-2\delta}\right)$$

Richard Williams (TU Darmstadt)

- z : gluon momentum
- d_1 : IR strength.
- d₂ : soft scale.
- d_3 : added integrated strength.

$$\lambda_{1}(z) = \left(\frac{z}{z+d_{2}}\right)^{-1/2-\kappa} \\ \times \left(\frac{d_{1}}{1+z/d_{2}} + z\frac{d_{3}}{d_{2}^{2} + (z-d_{2})^{2}} \right. \\ + \frac{z}{d_{2}+z} \left(\frac{4\pi}{\beta_{0}\alpha_{\mu}} \left(\frac{1}{\log(z/d_{2})} - \frac{1}{z/d_{2} - 1}\right)\right)^{-2\delta}\right)$$

c.f. q^{-4} singular gluon of Mecke *et al.* α_{μ} Vertex dressing² × Gluon

 $d_1 = 1.67, \, d_2 = 0.5, \, d_3 = 0$

No added integrated strength

c.f. q^{-4} singular gluon of Mecke *et al.* α_{μ} Vertex dressing² × Gluon

 $d_1 = 1.67, \, d_2 = 0.5, \, d_3 = 2.6$

- Integrated strength added.
- Meson observables fix parameters $m_{\pi} = 138$, $f_{\pi} = 99$, $m_{\rho} = 747$.

c.f. q^{-4} singular gluon of Mecke *et al.* α_{μ} Vertex dressing² × Gluon

 $d_1 = 13 \; (!!), \, d_2 = 0.5, \, d_3 = 0$

- No added integrated strength.
- Meson observables fix parameters. $m_{\pi} = 140, f_{\pi} = 95, m_{\rho} = 770.$

c.f. q^{-4} singular gluon of Mecke *et al.* α_{μ} Vertex dressing² × Gluon

Effective gluon (bare quark-gluon vertex) of Mecke et al.

- String tension, $\sigma = 0.18$.
- Would not give 'right' pion mass.

Parameter fixing

• Solve the Bethe-Salpeter equation for pion, rho

Fix current quark masses at 170 GeV² Tune parameters such that meson observables reproduced:

m_{π}	\sim	135 MeV
f_{π}	\sim	93 MeV
$m_{ ho}$	\sim	750 MeV

scale/set	1	2	3	4	5	6	7
<i>d</i> ₁	13	1.73	1.28	1.05	1.41	1.55	1.67
d ₂	0.5	0.2	0.4	0.6	0.5	0.5	0.5
d ₃	-	2.9	2.6	2.9	2.6	2.6	2.6

Numerical Procedure

Parameter fixing

Last three sets with constant d_2 look like:

- Very similar (though note log-scale)
 - \rightarrow will see very sensitive to infrared strength d_1 .
- Meson observables near independent of 20% change in d₁.

Numerical Procedure

Quark propagator

This parameter set yields quark dressing functions of the form:

- $M(0) \simeq 370 \mathrm{MeV}$
- $\langle q \overline{q} \rangle \simeq 250 \text{ MeV} (\overline{MS}).$

Turnover in Z_f attributable to artificial term yielding necessary integrated strength.

3 1 4 3

< A.

Numerical Procedure

Calculation

- Neglect terms $\sim F(k + P/2) F(k P/2)$ in $P \rightarrow 0$ limit.
- Discard all but leading component of BSA.

 \rightarrow *F*, *G*, *H* linear in *P*.

 \rightarrow demand modest accuracy (10^{-6}) due to computing time.

・ロト ・ 雪 ト ・ ヨ ト

- Soft scale chosen to be fixed from YM-sector.
- Vary IR strength parameter.

... meson phenomenology relatively unchanged. *but* anomalous mass very sensitive.

Obtain:	d_1	d_2	d_3	m_{π}	$m_{ ho}$	m_A^2
	Gev	Gev	Gev	IVIE V	IVIE V	Gev
	1.41	0.5	2.6	135	735	0.302
	1.55	0.5	2.6	135	741	0.417
	1.67	0.5	2.6	135	747	0.558

Realistic η and η' masses eminently achievable with model.

$$M^2 = \left(egin{array}{ccc} M_\pi^2 & 0 & 0 \ 0 & M_{88}^2 & M_{80}^2 \ 0 & M_{08}^2 & M_{00}^2 + m_A^2 \end{array}
ight)$$

Employ singlet-octet masssquared mixing matrix. Diagonalise to obtain physical mass eigenstates.

Obtain:

d_1	m_A^2	θ	m_{η}	$m_{\eta'}$
1 41	0.302	-35.3	412	790
1.55	0.417	-29.1	450	840
1.67	0.558	-23.2	479	906

Realistic η and η' masses eminently achievable with model.

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

outline

Introduction

- Motivation
- The $U_A(1)$ Problem

2 Dyson-Schwinger Studies in Landau Gauge

- Propagators
- Higher-order Green's functions
- Calculating anomalous mass
- Results

3 Summary and Outlook

・ 同 ト ・ ヨ ト ・ ヨ

Summary

- Motivated interest in η , η' problem
- Brief overview of Landau Gauge studies in QCD.
- Recognised importance of soft singularities
- Formulated effective gluon interaction to exhibit:
 - qualitative IR features of QG-vertex study.
 - correct UV anomalous dimensions.
- Applied to problem of $U_A(1)$ anomaly:
 - Diamond diagram Topological Susceptibility
 - Effect on physical mass eigenstates
 - Mixing angle.

Summary and Outlook

Outlook

- Fine tune parameters to wider range of observables
- Mixing in strange non-strange basis exhibit flavour symmetry breaking. Calculable within model.

•
$$f_0 \simeq f_\pi \left(1 + \Pi' \left(P^2 \right) \right) \Big|_{P^2 \to 0}$$

- High accuracy determination of Π (Compute via numerical derivative).
- Take $P^2 < 0$ continue to complex plane
- Higher order diagrams (large? re-summation \rightarrow meson exchange)
- Full tensor structure. For $P^2 \rightarrow 0$ leading BSA sufficient quark B/f_{π}
- Diamond diagram for ω, ϕ three gluons.
 - Contribution should be small. Four loop.