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Plan of the talk:

e Research interests of the EOtvos group in the field of quantum field
theoretical functional methods

e The 2PIl-Hartree approximation(s) to the effective action of scalar models

e Analysis of renormalisability in the broken symmetry phase

e Application to DS-equations:
Coleman-Weinberg symmetry breaking in an extended Higgs sector




Collective phenomena of interacting quantum fields in and out-of
equilibrium (since cca. 1990)

Phase transformations of strong and electroweak matter (phase diagrams,
equations of state, etc.)

Higgs phenomenon in extensions of the Standard Model (symmetry breaking
mechanism, real time dynamics, also in expanding Universe)
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General features & phenomenological applications
for relevant field theoretical (effective) models
consistent implementation of the (non-perturbative) renormalisation program




2Pl-Hartree approximate solutions of scalar field theories
A general class:
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2 different F,;.4 coupling tensors, 3 different 6 F,;.4 coupling counter-tensors,
2 different du? mass-counter terms

respecting the symmetry of the model can be introduced.




Gap equations and equation of state
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Example: O(N) model

Two independent O( ) invariant rank-4 tensors:
tcllbcd — 5ab56d7 abcd 5ac5bd + 5ad5bc
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O(N) equation of state:
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Two special cases:
. Fabcd:ﬁabcd ap =az =1
Conventional 2P| weighting

Compatibility of the equation of state with the ¢ gap equation:

(Mﬁ—g%v)zo,

Op? =02, ONS = 6Ny, 0Ag = NS + 2005
. a1 — 3,0&2 = —(N — 1)

"Symmetrized” model of Ilvanov, Riek, Hees and Knoll (2005)

Compatibility of the equation of state with the = gap equation:

MZ? =0 Goldstone theorem fullﬁlled

Sp? = 602, ONG = 0NS + 2008, NS = NG + N—_&)\

OAa = O



Renormalisability conditions

lllustrative example: Difference of the two gap equations:
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Substituting M?* — M2 from the finite equations into the renormalisation
condition coefficients of T=(M?2) — Tr(M?) and of v? vanish separately:
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Renormalised equation of state and gap equations
0= 4% + 2 [v2 + 3Tw(M2) + (N — Tp(M2)],

M2 = p? + gy [v? + (202 + (N = 1)an)Tr(M?) + o Tr(M2)]
M2 = p? + & [30% + (N — D Tp(M2) + (200 + a1)Tr(M?2)] .
Renormalisation of the equation of state

The condition
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Substitute /12 and M? from the renormalised gap equations into the last line
equate separately to zero the coefficients of Tr(M?), Tr(M?), v* and the
constant piece

— 4 equations for the determination of 54", 6AL, 54, 2.

Similar set of equations from the gap equations.

How can we be sure that they are mutually consistent?




General analysis

The resulting mass matrix is diagonalised by an orthogonal matrix O,;:
M25;; = O,;M2,0y4;
Renormalised equation for the squared mass matrix:
M2, = p23ap + 4F speqveva + 4F apedOeiTr(MZ) Oy

Divergence cancellation conditions

"Environment” (u?, T') dependent subdivergences:
40 Tr(MPA)O#1[0 Fspe s + ATy(F + 6 F) apeaFeaes] = 0,

The braketed expression is written as linear combination of ¢“.
If the number of subspaces of degenerate squared masses is equal or larger
than the number of independent rank-4 invariant tensors:

Vanishing of all elements of the braketed tensor yields the solution.




Determination of §F ;. f

Overall divergences  ~ v.v¢ piece:
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Example: if F = F, then v,v(6F — 0F)apes = 0.
Determination of §/i°
v-independent piece:
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Equation of state is compatible if
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Back to the O(N) model (Case | e.g. F = F)
Solution for the coefficients:
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Parametrisation of the potential energy counterterm:
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which leads to a unique quartic counter coupling 5\, = §\3' and reproduces
the exact result of the leading order large N analysis.




Remark:

The equations for §)\3', dAF coincide with those which can be derived with the
method of iterative renormalisation (Blaizot, lancu, Reinosa, 2004) where one
looks for the self-energy in form of infinite series:

Z MYk, oad =3 o™, aal =3 g™

and solves the gap equations iteratively.




Coleman-Weinberg type symmetry breaking in extended Higgs-sector

Model: A single real order parameter field representing the SM Higgs sector is
supplemented by a scalar N-plet (Szép & Patkds, 2006)
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Dyson-Schwinger equations in the N — oo limit in the symmetry broken
phase (¢ — vV Nv + o)
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Renormalisation and its consistency with bubble summation

Renormalised equation of state and gap equation for Mi:
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Renormalisation of the equation for 3-point coupling and G *:

Lyyo(p+a) = —5752M0v + sAeulvpo (P + @) Ir(p + 0),

I(p) = —i [, Gy(p — k)Gy(k) = Ta + Ir(p).

Cancellation of infinities in both equations is automatic with the above
counterterms

Expression for the vacuum expectation:
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CONCLUSIONS

e Transparent non-perturbative renormalisation
for 2P1-Hartree approximation to a wide class of scalar field theories
with explicit construction of the counterterms

e The construction is applicable also to
Dyson-Schwinger equations in the large N limit
with “bubble-sum” improved propagators

Next talk by Gergely Fejos:

e Analysis of the U(3) x U(3) symmetric meson model in the broken phase

e Solution of the renormalised gap equations plus equations of state with
phenomenological mass spectra




